Skip to main content Accessibility help

A look into Cu-based shape memory alloys: Present scenario and future prospects

  • Rupa Dasgupta (a1)


Cu-based shape memory alloys (SMAs) and among these copper–zinc (Cu–Zn), copper–aluminum (Cu–Al), and copper–tin (Cu–Sn) alloys both with and without ternary additions have shown potential due to their good shape recovery, ease of fabrication, excellent conductivity of heat and electricity. However, their applications are still limited because of the shortcomings of thermal stability, brittleness, and mechanical strength, which are closely related with microstructural characteristic of Cu-based SMAs, such as coarse grain sizes, high elastic anisotropies, and the congregation of secondary phases or impurities along the grain boundaries. Efforts are being made to overcome these drawbacks with proper ternary additions, adopting alternative processing routes and also optimizing the heat treatment cycles. The present article will deal with the current status of research and commercialization of Cu-based SMAs and dwell upon the future directions in which research should be targeted and future prospects of converting the research into components for commercial use.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Stice, J.D. and Wayman, C.M.: Observations of aging effects in a Cu-Sn shape memory alloy. Metall. Trans. A 13(10), 1687 (1982).
2.Kamal, M.: Mechanical properties of rapidly solidified of Cu–Sn shape memory alloys. Radiat. Eff. Defects Solids 161(3), 189 (2006).
3.Perkins, J.: The microstructure of rapidly solidified β-phase Cu-Zn-Al alloys. Metall. Trans. A 14(11), 2229 (1983).
4.Prashantha, S., Ranganatha Swamy, M.K., and Mallikarjun, U.S.: Shape memory effect in Cu-Sn-Mn ternary shape memory alloy processed by ingot metallurgy. Int. J. Metall. Mater. Sci. Eng. (IJMMSE) 2(1), 12 (2012).
5.Yi, H.C. and Moore, J.J.: Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted material. J. Mater. Sci. 25(2), 1159 (1990).
6.Asanovic, V., Delijicm, K., and Jaukovic, N.: A study of transformations of β-phase in Cu–Zn–Al shape memory alloys. Scr. Mater. 58, 599 (2008).
7.Sutou, Y., Omori, T., Kainuma, R., and Ishida, K.: Ductile Cu-Al-Mn based shape memory alloys: General properties and applications. Mater. Sci. Technol. 24(8), 896 (2008).
8.Ma, J., Karaman, I., and Noebe, R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55(5), 257 (2010).
9.Saule, F., Ahlers, M., Kropef, F., and Rivero, E.B.: The martensitic phases and their stability in Cu-Zn and Cu-Zn-Al alloys—IV. The influence of lattice parameter changes and evaluation of phase stabilities. Acta Metall. 40(12), 3229 (1992).
10.Ling-fei, C., Ming-pu, W., Zhou, L., Ben, X., and Yu-chang, S.: Thermal cycling effect in Cu-11.9Al-2.5Mn shape memory alloy with high Ms temperature. Trans. Nonferrous Soc. China 12(4), 716 (2002).
11.Sutou, Y., Omori, T., Kainuma, R., Ono, N., and Ishida, K.: Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metall. Mater. Trans. A 33A(9), 2817 (2002).
12.Wang, Q., Han, F., Cui, C., Bu, S., and Bai, L.: Effect of aging on the reverse martensitic phase transformation behaviours of Cu-Al-Mn shape memory alloys. Mater. Lett. 61, 5185 (2007).
13.Chen, J., Lia, Z., and Zhao, Y.Y.: A high-working-temperature CuAlMnZr shape memory alloy. J. Alloys Compd. 480, 481 (2009).
14.Dagdelen, F., Gokhan, T., Aydogdu, A., Aydogdu, Y., and Adigüzel, O.: Effects of thermal treatments on transformation behaviour in shape memory Cu-Al-Ni alloys. Mater. Lett. 57, 1079 (2003).
15.Sarı, U. and Kirindi, T.: Effects of deformation on microstructure and mechanical properties of a Cu-Al-Ni shape memory alloy. Mater. Charact. 59, 920 (2008).
16.Miki, M., Maeshiro, N., and Ogino, Y.: Effects of additional elements on the super plasticity of a Cu-14Al-3Ni shape memory alloy. Mater. Trans., JIM 30(12), 999 (1989).
17.Shajil, N., Das, D., and Chandrasekaran, L.: Effects of cycling on the pseudoelastic properties of CuAlMnNi & TiNi based pseudoelastic alloys. Int. J. Struct. Changes Solids – Mech. Appl. 1(1), 171 (2009).
18.Chen, Y., Zhang, X., Dunand, D.C., and Schuh, C.A.: Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Appl. Phys. Lett. 95(17), 906 (2009).
19.Sutou, Y., Koeda, N., Omori, T., Kainuma, R., and Ishida, K.: Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 57, 5748 (2009).
20.Sutou, Y., Koeda, N., Omori, T., Kainuma, R., and Ishida, K.: Effect of aging on stress induced martensitic transformations in ductile Cu-Al-Mn based shape memory alloys. Acta Mater. 57, 5759 (2009).
21.Vajpai, S.K., Dube, R.K., and Sangal, S.: Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from prealloyed powder by hot densification rolling of powder preforms. Metall. Mater. Trans. 42A, 3178 (2011).
22.Zengin, R. and Ceylan, M.: The effects of neutron irradiation on oxidation behavior, microstructure and transformation temperatures of Cu–12.7 wt.% Al–5 wt.% Ni–2 wt.% Mn shape memory alloy. Mater. Lett. 58, 55 (2003).
23.Zengin, R.: Microstructure and oxidation properties of a neutron-irradiated Cu–13.5wt% Al–4 wt% Ni shape memory alloy. Phys. B 363, 110 (2005).
24.Stanciu, S., Bujoreanu, L-G., Özkal, B., Lutfi Öveçoğlu, M., and Sandu, A.V.: Study of precipitate formation in Cu–Al–Ni–Mn–Fe shape memory alloys. J. Optoelectron. Adv. Mater. 10(6), 1365 (2008).
25.Xiaomin, C., Feng, H., Ni, L., and Xingwen, W.: Microstructure and shape memory effect of Cu-26.1Zn-4.8Al alloy. J. Wuhan Univ. Technol., Mater. Sci. Ed. 23, 717 (2008).
26.Asanovic, V. and Delujc, K.: The mechanical behavior and shape memory recovery of Cu-Zn-Al alloys. Metalurgija 13(1), 59 (2007).
27.Bai, Y.J., Geng, G.L., Bian, X.F., Sun, D.S., and Wang, S.R.: Influence of initial heating temperature on the reverse martensitic transformation of Cu–Zn–Al–Mn–Ni alloy. Mater. Sci. Eng., A 284, 25 (2000).
28.Kayali, N., Ozgen, S., and Adigiizel, O.: The influence of ageing on martensite morphology in shape memory Cu–Zn–Al alloys. J. Phys. IV France 7(C5), 317 (1997). Albuquerque, V.H.C., de A. Melo, T.A., Gomes, R.M., de Limaa, S.J.G., and Tavares, J.M.R.S.: Grain size and temperature influence on the toughness of a Cu-Al-Be shape memory alloy. Mater. Sci. Eng., A 528, 459 (2010).
30.Zhang, P., Ma, A., Lu, S., Lin, P., Jiang, J., Ma, H., and Chu, C.: Effect of equal channel angular pressing and heat treatment on the microstructure of Cu-Al-Be-B shape memory alloy. Mater. Lett. 63, 2676 (2009).
31.Montecinos, S. and Cuniberti, A.: Martensitic transformation and grain size in a Cu-Al-Be alloy. Procedia Mater. Sci. 1, 149 (2012).
32.Abu Arab, A. and Ahlers, M.: The stabilization of martensite in Cu-Zn-Al alloys. Acta Metall. 36(9), 2627 (1988).
33.Saule, F. and Ahlers, M.: Stability, stabilization and lattice parameters in Cu-Zn-Al martensites. Acta Metall. Mater. 43(6), 2373 (1995).
34.Kuwano, N., Doi, T., and Eguchi, T.: Annealing behaviour of heavily deformed martensites of Cu-Al alloys. Mater. Trans., JIM 20, 37 (1979).
35.Sathish, S., Mallik, U.S., and Raju, T.N.: Microstructure and shape memory effect of Cu-Zn-Ni shape memory alloys. J. Miner. Mater. Charact. Eng. 2, 71 (2014).
36.Pourkhorshidi, S., Parvin, N., Kenevisi, M.S., Naeimi, M., and Ebrahimnia Khaniki, H.: A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng., A 556, 658 (2012).
37.Guilemany, J.M., Peregrín, F., Lovey, F.C., LLorca, N., and Cesari, E.: TEM study of β and martensite in Cu-Al-Mn shape memory alloys. Mater. Charact. 26, 23 (1991).
38.Hornbogen, E., Mertinger, V., and Spielfield, J.: Ausageing and ausforming of a copper based shape memory alloy with high transformation temperatures. Z. Metallkd. 90(5), 318 (1999).
39.Adigiizel, O.: Martensite ordering and stabilization in copper based shape memory alloys. Mater. Res. Bull. 30(6), 755 (1995).
40.Sauda, S.N., Hamzaha, E., Abubakara, T., and Hosseinian, R.: A review on influence of alloying elements on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys. Jurnal Reknologi (Sciences & Engineering) 64(1), 51 (2013).
41.Sakamoto, H., Kijima, Y., and Shimizu, K.: Fatigue and fracture characteristics of polycrystalline Cu-Al-Ni shape memory alloys. Mater. Trans., JIM 23, 585 (1982).
42.Kustov, S., Golyandin, S., Sapozhnikov, K., Cesari, E., Van Humbeeck, J., and De Batist, R.: Influence of martensitic stabilization on the low temperature non-linear anelasticity in Cu-Zn-Al shape memory alloys. Acta Mater. 50, 3023 (2002).
43.Suotou, Y., Omori, T., Kainuma, R., and Ishida, K.: Ductile Cu-Al-Mn based shape memory alloys: General properties and applications. Mater. Sci. Technol. 24(8), 896 (2008).
44.Mallik, U.S. and Sampath, V.: Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater. Sci. Eng., A 481482, 680 (2008).
45.Segui, C., Cesari, E., and Van Humbeeck, J.: Irreversibility in two stage martensitic transformation of Cu-Al-Ni and Cu-Zn-Mn alloys. Mater. Trans., JIM 31(5), 375 (1990).
46.Sharma, M., Vajpai, S.K., and Dube, R.K.: Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from elemental powders via a novel powder metallurgy route. Metall. Mater. Trans. A 41A, 2905 (2010).
47.Li, Z., Pan, Z.Y., Tang, N., Jiang, Y.B., Liu, N., Fang, M., and Zheng, F.: Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy. Mater. Sci. Eng., A 417, 225 (2006).
48.Mallik, U.S. and Sampath, V.: Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J. Alloys Compd. 469, 156 (2009).
49.V.R. Harchekar and M. Singla: Cu—Zn—Al (6%) shape memory alloy with low martensitic temperature and a process for its manufacture. Patent 7195681, Issued on March 27, 2007.
50.Zengin, R. and Ceylan, M.: The changes in transformation temperatures under stress of Cu-12.7Al-5Ni-2Mn alloys. Thermochim. Acta 414, 155 (2004).
51.Kneissl, A.C., Unterweger, E., and Lojen, G.: Functional properties of wires and thin ribbons of several shape memory alloys. Adv. Eng. Mater. 8(11), 1113 (2006).
52.Yang, S., Su, Y., Wang, C., and Liu, X.: Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater. Sci. Eng., B 185, 67 (2014).
53.Sutou, Y., Omori, T., Yamauchi, K., Ono, N., Kainuma, R., and Ishida, K.: Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater. 53, 4121 (2005).
54.Sánchez-Arévalo, F.M., García-Fernández, T., Pulos, G., and Villagrán-Muniz, M.: Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy. Mater. Charact. 60, 775782 (2009).
55.Xiao, Z., Fang, M., Li, Z., Xiao, T., and Lei, Q.: Structure and properties of ductile Cu-Al-Mn shape memory alloy synthesized by mechanical alloying and powder metallurgy. Mater. Des. 58, 451 (2014).
56.Funakubo, H.: Shape Memory Alloys, 1st ed.; Gordon and Breach Science Publishers: New York, 1987; p. 226.
57.Wayman, C.M. and Duerig, T.W.: An introduction to martensite and shape memory. Engineering Aspects of Shape Memory Alloys, 1st ed.; Butterworth-Heinemann: Oxford, 1990; p. 3.
58.Schroeder, T.A. and Wayman, C.M.: The two-way shape memory effect and other “training” phenomena in Cu-Zn single crystals. Scr. Metall. 11(3), 225 (1977).
59.Stalmans, R., Van Humbeeck, J., and Delaey, L.: Training and the two way memory effect in copper based shape memory alloys. J. Phys. IV C4(1), 403 (1991).
60.Wei Min, H.: Two-way behavior of a Nitinol torsion bar. In Proc. SPIE Vol. 3675, Smart Structures and Materials; Smart Materials Technologies, Wuttig, M., ed. (SPIE Digital Library, Newport Beach, CA, 1999); p. 284.
61.San Juan, J., , M.L., and Schuh, C.A.: Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater. 60(10), 4093 (2012).
62.Huang, W. and Toh, W.: Training two-way shape memory alloy by reheat treatment. J. Mater. Sci. Lett. 19, 1549 (2000).
63.Kneisl, A.C., Unterweger, E., and Lojen, G.: Functional properties of wires and thin ribbons of several shape memory alloys. Adv. Eng. Mater. 8(11), 1115 (2006).
64.Bai, Y., Shi, Q., Geng, G., Sun, D., and Bian, X.: Formation mechanism of curved martensite structure in Cu based shape memory alloys. J. Mater. Sci. Technol. 16(1), 78 (2000).
65.Casati, R., Vedani, M., and Tuiss, A.: Thermal cycling of stress-induced martensite for high-performance shape memory effect. Scr. Mater. 80, 13 (2014).
66.Firstov, G.S., Van Humbeeck, J., and Koval, Y.N.: High temperature shape memory alloys: Problems and prospects. J. Intell. Mater. Syst. Struct. 17, 1041 (2006).
67.Hopulele, I., Istrate, S., Stanciu, S., and Calugaru, Gh.: Comparative study of certain Cu-Zn-Al-type alloys concerning their superelastic behavior and shape memory. J. Optoelectronics Adv. Mater. 6(1), 277 (2004).
68.Hel, D.: Pseudoelastic behavior of shape memory alloys: Constitutive theory and identification of the material parameters using neural network. Technische Mechanik 25(1), 39 (2005).
69.Van Schoor, M.C.: Method and device for measuring strain using shape memory alloy materials, Issued patent: US6550341, Issue date April 22, 2003.
70.Alam, M.S., Youssef, M.A., and Nehdi, M.: Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: A review. Can. J. Civ. Eng. 34(9), 1075 (2007).
71.Cunningham, B. and Ashbee, K.H.G.: An in situ SEM kossel x-ray diffraction study of pseudoelasticity. Acta Metall. Mater. 38(12), 2561 (1990).
72.Miura, S. and Kato, H.: Thermodynamical analysis of pseudoelasticity and calorimetry in shape memory alloys. Mater. Sci. Res. Int. 2, 67 (1995).
73.Wei, Z., Laizhu, J., Ning, L., and Yuhua, W.: Improvement of shape memory effect in an Fe–Mn–Si–Cr–Ni alloy fabricated by equal channel angular pressing. J. Mater. Process Technol. 208(1–3), 130 (2008).
74.Montecinos, S., Cuniberti, A., and Sepúlveda, A.: Grain size and pseudoelastic behaviour of a Cu–Al–Be alloy. Mater. Charact. 59, 117 (2008).
75.Yawny, A., Malarria, J., Lovey, F.C., and Sade, M.: Recoverable effects related to pseudoelastic cycling in Cu-Zn-Al single crystals. J. Phys. C5, 531 (1997).
76.Van Humbeeck, J. and Delaey, L.: The influence of strain-rate, amplitude and temperature on the hysteresis of a pseudoelastic Cu-Zn-Al single crystal. J. Phys. C5, 1007 (1981).
77.Miyazaki, S., Fu, Y.Q., and Huang, W.M.: Thin Film Shape Memory Alloys, 1st ed.; Cambridge University Press: Cambridge, England, 2009; pp. 261, 370.
78.San Juan, J., No, M.L., and Schuh, C.A.: Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. J. Mater. Res. 26(19), 2461 (2011).
79.Pops, H.: Stress-induced pseudoelasticity in ternary Cu-Zn based beta prime phase alloys. Metall. Trans. 1(25), 1 (1970).
80.Casciati, S.: Experimental studies on the fatigue life of shape memory alloy bars. Smart Struct. Syst. 6(1), 73 (2010).
81.Ortín, J. and Planes, A.: Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 37(5), 1433 (1989).
82.Dvorack, M.A., Kuwano, N., Polat, S., Chen, H., and Wayman, C.M.: Decomposition of a β1-phase Cu-Al-Ni alloy at elevated temperature. Scr. Metall. 17(11), 1333 (1983).
83.Morris, M.A.: High temperature properties of ductile Cu-Al-Ni shape memory alloys with boron additions. Acta Metall. 40, 1573 (1992).
84.Wayman, C.M.: Thennoelastic martensitic transformations and the shape memory effect. In Proc. of the Int. Conf. on phase Trans. In Soliak, Maleme-Chania, North-Holland, New York, 1984, p. 657.
85.Van Humbeeck, J.: High temperature shape memory alloys. Trans. ASME 12, 98 (1999).
86.Marukawa, K. and Tsuchiya, K.: Two important aging effects on the martensite phase in CuZnAI alloys: Rubber effect and stabilization of martensite. J. Phys. 11, 8 (2001).
87.Junkai, D., Xiangdong, D., Turab, L., Tetsuro, S., Kazuhiro, O., Jun, S., Saxena, A., and Xiaobing, R.: Microscopic mechanism of martensitic stabilization in shape-memory alloys: Atomic-level processes. Phys. Rev. B 81(22), 1 (2010).
88.Wang, Y., Ren, X., and Otsuka, K.: Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97(22), 5703 (2006).
89.Romero, R. and Stipcich, M.: The stabilization of martensite in Cu-Zn-Al-Ti-B shape memory alloys. Fifth European symposium on martensitic transformations and shape memory alloys. J. Phys. 11(8), 135 (2001).
90.Rabeeh, B.M., El Batanouny, M.M., and El Ashram, A.E.: Microstructural characterization and solid state processing of Cu-Zn-Al shape memory alloy. Can. J. Mech. Sci. Eng. 2(2), 11 (2011).
91.Janke, L., Czaderski, C., Motavalli, M., and Ruth, J.: Application of shape memory alloys in civil engineering structures – Overview, limits and new ideas. Mater. Struct. RILEM 38(279), 578 (2005).
92.Rashed, M.G.: Civil engineering application of shape memory alloys. In Proceedings of 1st International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh, 2012; p. 1.
93.Sutou, Y., Omoria, T., Wang, J.J., Kainuma, R., and Ishida, K.: Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater. Sci. Eng., A 378, 278 (2004).
94.Debbarma, S.R. and Saha, S.: Review of shape memory alloys applications in civil structures, and analysis for its potential as reinforcement in concrete flexural members. Int. J. Civ. Struct. Eng. 2(3), 924 (2012).
95.Sepúlveda, J., Boroschek, R., Herrera, R., Moroni, O., and Sarrazin, M.: Steel beam–column connection using copper-based shape memory alloy dampers. J. Constr. Steel Res. 64(4), 429 (2008).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed