Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T06:40:54.069Z Has data issue: false hasContentIssue false

The location and effects of Si in (Ti1–xSix)Ny thin films

Published online by Cambridge University Press:  31 January 2011

Axel Flink*
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Manfred Beckers
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Tommy Larsson
Affiliation:
Seco Tools AB, SE-737 82 Fagersta, Sweden
Slawomir Braun
Affiliation:
Division of Surface Physics and Chemistry, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
Lennart Karlsson
Affiliation:
Seco Tools AB, SE-737 82 Fagersta, Sweden
Lars Hultman
Affiliation:
Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
*
a) Address all correspondence to this author. e-mail: axefl@ifm.liu.se
Get access

Abstract

(Ti1–xSix)Ny (0 ≤ x ≤ 0.20; 0.99 ≤ y(x) ≤ 1.13) thin films deposited by arc evaporation have been investigated by analytical transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and nanoindentation. Films with x ≤ 0.09 are single-phase cubic (Ti,Si)N solid solutions with a dense columnar microstructure. Films with x > 0.09 have a featherlike microstructure consisting of cubic TiN:Si nanocrystallite bundles separated by metastable SiNz with coherent-to-semicoherent interfaces and a dislocation density of as much as 1014 cm−2 is present. The films exhibit retained composition and hardness between 31 and 42 GPa in annealing experiments to 1000 °C due to segregation of SiNz to the grain boundaries. During annealing at 1100–1200 °C, this tissue phase thickens and transforms to amorphous SiNz. At the same time, Si and N diffuse out of the films via the grain boundaries and TiN recrystallize.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mayrhofer, P.H., Mitterer, C., Hultman, L., and Clemens, H.: Micro-structural design of hard coatings. Mater. Sci. 51, 1032 (2006).Google Scholar
2Karlsson, L., Hultman, L., Johansson, M.P., Sundgren, J-E., and Ljungcrantz, H.: Growth, microstructure, and mechanical proper-ties of arc evaporated TiCxN1–x (0≤ × ≤1) films. Surf. Coat. Technol. 126, 1 (2000).CrossRefGoogle Scholar
3Veprek, S. and Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64 (1995).CrossRefGoogle Scholar
4Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P., and Prochazka, J.: Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476, 1 (2005).CrossRefGoogle Scholar
5Patscheider, J., Zehnder, T., and Diserens, M.: Structure-performance relations in nanocomposite coatings. Surf. Coat. Technol. 146–147, 201 (2001).CrossRefGoogle Scholar
6Söderberg, H., Molina-Aldereguia, J.M., Hultman, L., and Odén, M.: Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 97, 114327 (2005).CrossRefGoogle Scholar
7Hu, X., Zhang, H., Dai, J., Li, G., and Gu, M.: Study on the super-hardness mechanism of Ti–Si–N nanocomposite films: Influence of the thickness of the Si3N4 interfacial phase. J. Vac. Sci. Tech-nol., A 23, 114 (2005).CrossRefGoogle Scholar
8Söderberg, H., Flink, A., Birch, J., Persson, P.O.Å., Beckers, M., Hultman, L., and Odén, M.: RHEED studies during growth of TiN/SiNx/TiN trilayers on MgO (001). J. Mater. Res. 22(11), 3255 (2007).CrossRefGoogle Scholar
9Flink, A., Larsson, T., Sjölén, J., Karlsson, L., and Hultman, L.: Influence of Si in arc evaporated (Ti,Si)N thin films: Evidence for cubic solid solutions and their thermal stability. Surf. Coat. Technol. 200, 1535 (2005).CrossRefGoogle Scholar
10He, J.L., Chen, C.K., and Hon, M.H.: Microstructure and properties of Ti–Si–N films prepared by plasma-enhanced chemical vapor deposition. Mater. Chem. Phys. 44, 9 (1996).CrossRefGoogle Scholar
11Li, Z.G., Wu, Y.X., and Miyake, S.: High-flux ion irradiation with energy of 20 eV affecting phase segregation and low-tempera-ture growth of nc-TiN/a-Si3N4 nanocomposite films. J. Vac. Sci. Technol., A 25(6), 1524 (2007).CrossRefGoogle Scholar
12Alling, B., Flink, A., Hultman, L., Karimi, A., and Abrikosov, I.A.: (2008, unpublished).Google Scholar
13Söderberg, H., Molina-Aldereguia, J.M., Larsson, T., Hultman, L., and Odén, M.: Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers. Appl. Phys. Lett. 88, 191902 (2006).CrossRefGoogle Scholar
14Kong, M., Zhao, W., Wei, L., and Li, G.: Investigation on themicrostructure and hardening mechanism of TiN/Si3N4 nanocom-posite coatings. J. Phys. D: Appl. Phys. 40, 2858 (2007).CrossRefGoogle Scholar
15Hultman, L., Bareno, J., Flink, A., Söderberg, H., Larsson, K., Petrova, V., Odén, M., Greene, J.E., and Petrov, I.: Interface structure in superhard TiN–SiN nanolaminates nanocomposites: Film growth experiments and ab initio calculations. Phys. Rev. B 75, 155437 (2007).CrossRefGoogle Scholar
16Zhang, Y., Whitlow, H.J., Winzell, T., Bubb, I.F., Sajavaara, T., Jokinen, J., Arstila, K., and Keinonen, J.: Detection efficiency of time-of-flight energy elastic recoil detection analysis systems. Nucl. Instrum. Methods Phys. Res., Sect. B 149, 477 (1999).CrossRefGoogle Scholar
17Janson, M.S.: CONTES Instruction Manual (2004).Google Scholar
18Sue, J.A.: X-ray elastic constants and residual stress of textured titanium nitride coating. Surf. Coat. Technol. 54–55, 154 (1992).CrossRefGoogle Scholar
19Langford, R.M. and Petford-Long, A.K.: Preparation of transmission electron microscopy cross-section specimens using focused-ion-beam milling. J. Vac. Sci. Technol., A 19, 2186 (2001).CrossRefGoogle Scholar
20Oliver, W. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
21Boxman, R.L., Sanders, D.M., Martin, P.J., and Laferty, J.M.: Handbook of Vacuum Arc Science, Fundamentals and Applications (Noyes Publications, NJ, 1995).Google Scholar
22Powder Diffraction File TiN: 38-1420 (JCPDS International Center for Powder Diffraction Data, Swarthmore, PA, 1998).Google Scholar
23Karlsson, L.: Arc evaporated titanium carbonitride coatings. Ph.D. Thesis, Linköping Studies in Science and Technology, Dissertation no. 565, Linköping University, Sweden, 1999.Google Scholar
24Zhang, R.F. and Veprek, S.: Phase stabilities of self-organized nc- TiN/a-Si3N4 nanocomposites and of Ti1–xSixNy solid solutions studied by ab initio calculation and thermodynamic modeling. Thin Solid Films 516, 2264 (2008).CrossRefGoogle Scholar
25Mayrhofer, P.H., Mitterer, C., Wen, J.G., Greene, J.E., and Petrov, I.: Self-organized nanocolumnar structure in superhardTiB2 thin films. Appl. Phys. Lett. 86(12), 131909 (2005).CrossRefGoogle Scholar
26Sandu, C.S., Sanjinés, R., and Medjani, F.: Control of mor-phology (ZrN crystallite size and SiNx layer thickness) in Zr–Si–N nanocomposite thin films. Surf. Coat. Technol. 202, 2278 (2008).CrossRefGoogle Scholar
27Jedrzejowski, P., Amassian, A., Bousser, E., Klemberg-Sapieha, J.E., and Martinu, L.: Real-time in situ growth study of TiN-and TiCxNy-based superhard nanocomposite coatings using spec-troscopic ellipsometry. Appl. Phys. Lett. 88, 071915 (2006).CrossRefGoogle Scholar
28Saha, N.C. and Tompkins, H.G.: Titanium nitride oxidation chemistry. An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992).CrossRefGoogle Scholar
29Prieto, P. and Kirby, R.R.: X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter-deposited TiN films and their oxidation properties. J. Vac. Sci. Technol., A 13, 2819 (1995).CrossRefGoogle Scholar
30Jiang, N., Shen, Y.G., Mai, Y-W., Chan, T., and Tung, S.C.: Nanocomposite Ti–Si–N films deposited by reactive unbalanced magnetron sputtering at room temperature. Mater. Sci. Eng., B 106, 163 (2004).CrossRefGoogle Scholar
31Goto, T. and Hirai, T.: ESCA study of amorphous CVD Si3N4–BN composites. J. Mater. Sci. 7, 548 (1988).Google Scholar
32Karlsson, L., Ramanath, G., Johansson, M., Hörling, A., and Hultman, L.: The influence of thermal annealing on residual stress-es and mechanical properties of arc-evaporated TiCxN1–x (x= 0, 0.15 and 0.45) thin films. Acta Mater. 50, 5103 (2003).CrossRefGoogle Scholar
33Shin, C-S., Rudenja, S., Gall, D., Hellgren, N., Lee, T-Y., Petrov, I., and Greene, J.E.: Growth, surface morphology, and electrical resistivity of fully strained substoiciometric epitaxial TiNx (0.67 [less than or equal to] x less than or equal 1.0) layers on MgO(001). J. Appl. Phys. 95, 356 (2004).CrossRefGoogle Scholar
34Finster, J., Klinkenberg, E-D., and Heeg, J.: ESCA and SEXAFS investigations of insulating materials for ULSI microelectronics. Vacuum 41, 1586 (1990).CrossRefGoogle Scholar
35Garcia-Mendez, M., Galvan, D.H., Posada-Amarillas, A., and Farias, M.H.: Experimental and theoretical study of the electronic properties of CoSi2 and NiSi2. Appl. Surf. Sci. 230, 386 (2004).CrossRefGoogle Scholar
36Karlsson, L., Hultman, L., and Sundgren, J-E.: Influence of residual stresses on the mechanical properties of TiCxN1–x (x= 0, 0.15, 0.45) thin films deposited by arc evaporation. Thin Solid Films 371, 167 (2002).CrossRefGoogle Scholar
37Ljungcrantz, H., Odén, M., Hultman, L., Greene, J.E., and Sundgren, J-E.: Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO. J. Appl. Phys. 80, 6725 (1996).CrossRefGoogle Scholar
38Fleischer, R.L.: Substitutional solution hardening. Acta Metall. 11, 203 (1963).CrossRefGoogle Scholar
39Hall, E.O.: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. London, Sect. B 64, 747 (1951).CrossRefGoogle Scholar
40Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
41Schuh, C. and Nieh, T.G.: Hardness and abrasion resistance of nano-crystalline nickel alloys near the Hall–Petch breakdown regime, in Nanomaterials for Structural Applications, edited by Berndt, C.C., Fischer, T.E., Ovid'ko, I., Skandan, G., and Tsakalakos, T. (Mater. Res. Soc. Symp. Proc. 740, Warrendale, PA, 2003), p. 27.Google Scholar