Skip to main content Accessibility help

Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals

  • Katharine M. Flores (a1) and Reinhold H. Dauskardt (a1)


Deformation in metallic glasses is generally considered to arise from flow in localized shear bands, where adiabatic heating is thought to reduce glass viscosity. Evidence has been inferred from the veined fracture surfaces and molten droplets reported for metallic glasses. In this work, the detailed spatially resolved surface temperature increase and subsequent dissipation associated with crack tip plasticity in a Zr–Ti–Ni–Cu–Be bulk metallic glass is characterized for the first time. Maximum temperatures of up to 54.2 K were estimated from a heat conduction model and shown to be in excellent agreement with a nonhardening plasticity model for the heat generated by a propagating crack. Local cooling was also observed and shown to be consistent with thermoelastic effects.



Hide All
1.Johnson, W.L. and Peker, A., in Science and Technology of Rapid Solidification and Processing, edited by Otooni, M. A. (Kluwer Academic Publishers, The Netherlands, 1995), p. 25.
2.Bruck, H.A., Christman, T., Rosakis, A. J., and Johnson, W.L., Scripta Metall. 30, 429 (1994).
3.Conner, R.D., Rosakis, A. J., Johnson, W. L., and Owen, D.M., Scripta Metall. 37, 1373 (1997).
4.Gilbert, C.J., Ritchie, R. O., and Johnson, W.L., Appl. Phys. Lett. 71, 476 (1997).
5.Lowhaphandu, P. and Lewandowski, J.J., Scripta Metall. 38, 1811 (1998).
6.Spaepen, F., Acta Metall. 25, 407 (1977).
7.Bruck, H.A., Rosakis, A.J., and Johnson, W. L., J. Mater. Res. 11, 503 (1996).
8.Leonhard, A., Xing, L. Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L., in Nanostruct. Mater. 10 (1998), in press.
9.Kato, H. and Inoue, A., Mater. Trans. JIM 38, 793 (1997).
10.Doblione, R., Spriano, S., and Battezzati, L., Nanostruct. Mater. 8, 447 (1997).
11.Bengus, V.Z., Tabachnikova, E. D., Shumilin, S.E., Golovin, Y. I., Makarov, M.V., Shibkov, A. A., Miskuf, J., Csach, K., and Ocelik, V., Int. J. Rapid Solid. 8, 21 (1993).
12.Liu, C.T., Heatherly, L., Easton, D. S., Carmichael, C. A., Scheibel, J. H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J. A., and Inoue, A., Metall. Trans. A 29A, 1811 (1998).
13.Flores, K.M. and Dauskardt, R.H., Stanford University, unpublished.
14.Krafft, J. M. and Irwin, G. R., in Fracture Toughness Testing and Its Applications (ASTM-STP 381, Philadelphia, PA, 1965), p. 114.
15.Rice, J. R. and Levy, N., in Physics of Strength and Plasticity, edited by Argon, A.S. (MIT Press, Cambridge, MA, 1969), p. 277.
16.Zehner, A.T. and Rosakis, A. J., J. Mech. Phys. Solids 39, 385 (1991).
17.Zehner, A.T. and Rosakis, A.J., in Experimental Techniques in Fracture, edited by Epstein, J. S. (VCH Publishers, Inc., New York, 1993), p. 125.
18.Bryant, J. D., Makel, D.D., and Wilsdorf, H. G. F., in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (Marcel Dekker, Inc., New York, 1986), p. 723.
19.Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, U.K., 1959), pp. 256, 258.
20.Taylor, G.I. and Quinney, H., Proc. R. Soc. London 143, 307 (1934).
21.Bever, M.B., Holt, D.L., and Titchner, A.L., Prog. Mater. Sci. 17, 192 (1973).
22.McClintock, F.A., Fracture: An Advanced Treatise (Academic Press, New York, 1971), Vol. 3, p. 47.
23.Sih, G.C. and Tzou, D. Y., Theor. Appl. Frac. Mech. 6, 103 (1986).
24.Nye, J. F., Physical Properties of Crystals (Oxford Science Publications, Oxford, U.K., 1985), p. 176.

Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals

  • Katharine M. Flores (a1) and Reinhold H. Dauskardt (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed