Skip to main content Accessibility help
×
Home

Liquid droplet dynamics and complex morphologies in vapor–liquid–solid nanowire growth

  • E.J. Schwalbach (a1), S.H. Davis (a2), P.W. Voorhees (a3), D. Wheeler (a4) and J.A. Warren (a4)...

Abstract

The morphology of semiconducting nanowires, including kinked and branched wires, must be controlled in order to produce functional devices. Here, we describe some of the experimental and theoretical work involving complex morphologies of Au-catalyzed Si nanowires grown using the vapor–liquid–solid technique. Although there is a broad parameter space to explore, experiments have highlighted the importance of the precursor and impurity partial pressures on kinking behavior. Theoretical and modeling work has indicated that the stability of and transitions in droplet configuration are important for growth direction changes that can lead to complex morphologies. We describe recent phase-field simulations of nanowire growth that address the dynamics of liquid droplets during vapor–liquid–solid growth, as well as the implications of these results for the formation of wires with complex morphology.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: p-voorhees@northwestern.edu

References

Hide All
1.Nam, S., Jiang, X., Xiong, Q., Ham, D., and Lieber, C.M.: Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. 106, 21035 (2009).
2.Bierman, M.J. and Jin, S.: Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050 (2009).
3.Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., and Atwater, H.A.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239 (2010).
4.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol. 3, 31 (2008).
5.Cui, Y., Wei, Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).
6.Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., and Lieber, C.M.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. 101, 14017 (2004).
7.Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294 (2005).
8.Kim, W., Ng, J.K., Kunitake, M.E., Conklin, B.R., and Yang, P.: Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228 (2007).
9.Tian, B., Cohen-Karni, T., Qing, Q., Duan, X., Xie, P., and Lieber, C.M.: Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830 (2010).
10.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
11.Wagner, R.S. and Doherty, C.J.: Mechanism of branching and kinking during VLS crystal growth. J. Electrochem. Soc. 115, 93 (1968).
12.Tian, B., Xie, P., Kempa, T.J., Bell, D.C., and Lieber, C.: Single-crystalline kinked semiconductor nanowire superstructures. Nature Nanotechnol. 4, 824 (2009).
13.Bootsma, G.A. and Gassen, H.J.: Quantitative study on growth of silicon whiskers from silane and germanium whiskers from germane. J. Cryst. Growth 10, 223 (1971).
14.Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., and Ruda, H.: Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 15, 554 (1997).
15.Hannon, J.B., Kodambaka, S., Ross, F.M., and Tromp, R.M.: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69 (2006).
16.Kodambaka, S., Hannon, J.B., Tromp, R.M., and Ross, F.M.: Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292 (2006).
17.Kawashima, T., Mizutani, T., Nakagawa, T., Torii, H., Saitoh, T., Komori, K., and Fujii, M.: Control of surface migration of gold particles on Si nanowires. Nano Lett. 8, 362 (2008).
18.Lugstein, A., Steinmair, M., Hyun, Y.J., Hauer, G., Pongratz, P., and Bertagnolli, E.: Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 8, 2310 (2008).
19.Madras, P., Dailey, E., and Drucker, J.: Kinetically induced kinking of vapor–liquid–solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).
20.Madras, P., Dailey, E., and Drucker, J.: Spreading of liquid AuSi on vapor–liquid solid–grown Si nanowires. Nano Lett. 10, 1759 (2010).
21.Dailey, E., Madras, P., and Drucker, J.: Au on vapor–liquid–solid grown Si nanowires: Spreading of liquid AuSi from the catalytic seed. J. Appl. Phys. 108, 064320 (2010).
22.Dailey, E., Madras, P., and Drucker, J.: Composition and growth direction control of epitaxial vapor–liquid–solid-grown SiGe nanowires. Appl. Phys. Lett. 97, 143106 (2010).
23.Schwarz, K.W. and Tersoff, J.: From droplets to nanowires: Dynamics of vapor–liquid–solid growth. Phys. Rev. Lett. 102, 206101 (2009).
24.Schwarz, K.W. and Tersoff, J.: Elementary processes in nanowire growth. Nano Lett. 11, 316 (2011).
25.Roper, S.M., Anderson, A.M., Davis, S.H., and Voorhees, P.W.: Radius selection and droplet unpinning in vapor–liquid–solid-grown nanowires. J. Appl. Phys. 107, 114320 (2010).
26.McCallum, M.S., Voorhees, P.W., Miksis, M.J., Davis, S.H., and Wong, H.: Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 79, 7604 (1996).
27.Schmidt, V., Senz, S., and Gösele, U.: The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. A 445 (2005).
28.Roper, S.M., Davis, S.H., Norris, S.A., Golovin, A.A., Voorhees, P.W., and Weiss, M.: Steady growth of nanowires via the vapor–liquid–solid method. J. Appl. Phys. 102, 034304 (2007).
29.Dussan, E.B., , V: On the spreading of liquids on solid surfaces: Static and dynamic contact lines. Annu. Rev. of Fluid Mech. 11, 371 (1979).
30.de Gennes, P.G.: Wetting—Statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).
31.Blake, T.D.: The physics of moving wetting lines. J. Colloid Interface Sci. 299, 1 (2006).
32.Rosenblat, S. and Davis, S.H.: How do liquid drops spread on solids? In Frontiers in Fluid Mechanics (Davis, S.H. and Lumley, J.L., eds.; Springer–Verlag, New York, 1985).
33.Blake, T.D. and Haynes, J.M.: Kinetics of Liquid/Liquid displacement. J. Colloid and Interface Sci. 30, 421 (1969).
34.Blake, T.D., Clarke, A., DeConinck, J., and deRuijter, M.: Contact angle relaxation during droplet spreading: Comparison between molecular kinetic theory and molecular dynamics. Langmuir 13, 2164 (1997).
35.Hoffman, R.L.: A study of the advancing interface: I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50, 228 (1975).
36.Hoffman, R.L.: A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid–gas systems. J. Colloid Interface Sci. 94, 470 (1983).
37.Schiaffino, S. and Sonin, A.A.: Molten droplet deposition and solidification at low Weber numbers. Phys. Fluids 9, 3172 (1997).
38.Wheeler, D., Warren, J.A., and Boettinger, W.J.: Modeling the early stages of reactive wetting. Phys. Rev. E 82, 051601 (2010).
39.Boettinger, W.J., Warren, J.A., Beckermann, C., and Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163 (2002).
40.Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113 (2002).
41.Seppecher, P.: Moving contact lines in the Cahn–Hilliard theory. Int. J. Eng. Sci. 34, 977 (1996).
42.Ding, H. and Spelt, P.D.M.: Inertial effects in droplet spreading: A comparison between diffuse-interface and level-set simulations. J. Fluid Mech. 576, 1 (2007).
43.Ding, H., Gilani, M.N.H., and Spelt, P.D.M.: Sliding, pinch-off and detachment of a droplet on a wall in shear flow. J. Fluid Mech. 644, 217 (2010).
44.Villanueva, W., Gronhagen, K., Amberg, G., and Agren, J.: Multicomponent and multiphase modeling and simulation of reactive wetting. Phys. Rev. E 77, 056313 (2008).
45.Villanueva, W., Boettinger, W.J., Warren, J.A., and Amberg, G.: Effect of phase change and solute diffusion on spreading on a dissolving substrate. Acta Mater. 57, 6022 (2009).
46.Karma, A. and Rappel, W.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, R3017 (1996).
47.Sekerka, R.F. and Bi, Z.: Phase field model of multicomponent alloy solidification with hydrodynamics. In Interfaces for the 21st Century: New Research Directions in Fluid Mechanics and Materials Science (McFadden, G.B., ed.; Imperial College Press, London, 2002).
48.Sekerka, R.F.: Irreversible thermodynamic basis of phase field models. Phil. Mag. 91, 3 (2011).
49.Guyer, J.E., Wheeler, D., and Warren, J.A.: FiPy: Partial differential equations with Python. Comput. Sci. Eng. 11, 6 (2009).
50.Adhikari, H., Marshall, A.F., Goldthorpe, I.A., Chidsey, C.E.D., and McIntyre, P.C.: Metastability of Au-Ge liquid nanocatalysts: Ge vapor–liquid–solid nanowire growth far below the bulk eutectic temperature. ACS Nano. 1, 415 (2007).
51.Schwalbach, E.J. and Voorhees, P.W.: Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739 (2008).
52.Kim, B.J., Tersoff, J., Wen, C.Y., Reuter, M.C., Stach, E.A., and Ross, F.M.: Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys. Rev. Lett. 103, 155701 (2009).
53.Iida, T. and Guthrie, R.: The Physical Properties of Liquid Metals (Oxford University Press, New York, 1993).
54.Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood Cliffs, NJ, 1969).
55.Dussan V, E.B. and Davis, S.H.: Motion of a fluid-fluid interface along a solid-surface. J. Fluid Mech. 65, 71 (1974).
56.Schwalbach, E.J.: Northwestern University, Evanston, IL. Unpublished results, 2011.
57.Kobayashi, R.: Modeling and numerical simulations of dendritic crystal-growth. Phys. D 63, 410 (1993).
58.Wheeler, A.A. and McFadden, G.B.: On the notion of a ξ-vector and a stress tensor for a general class of anisotropic diffuse interface models. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 453, 1611 (1997).

Keywords

Liquid droplet dynamics and complex morphologies in vapor–liquid–solid nanowire growth

  • E.J. Schwalbach (a1), S.H. Davis (a2), P.W. Voorhees (a3), D. Wheeler (a4) and J.A. Warren (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed