Skip to main content Accessibility help

Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications

  • Mohd. Shkir (a1), Mohd. Arif (a2), Vanga Ganesh (a1), Mohamed A. Manthrammel (a1), Arun Singh (a2), Shivaraj R. Maidur (a3), Parutagouda Shankaragouda Patil (a3), Ibrahim S. Yahia (a1), Hamed Algarni (a1) and Salem AlFaify (a1)...


Herein, we report the detailed optoelectronic characteristics of low cost fabricated pristine and 1, 5, 10, and 15 wt% Mg-doped ZnO films on the FTO substrate (MZO/FTO) through the spin coating technique. High crystallinity and single phase of the film were confirmed by X-ray diffraction investigation. The average crystallite size was in the range of 46–78 nm. Homogeneous distribution of Mg doping in ZnO was approved by elemental mapping analysis. The fiber-like surface morphology was confirmed by the scanning electron microscopy analysis. Optical transparency was observed in the range of 40–80% for the fabricated films. The optical band gaps for direct and indirect transitions obtained from Tauc’s relation are in the range of 3.103–3.283 eV and 2.423–2.968 eV, respectively. It is also observed that the energy gap of MZO films decreases with an increase in Mg doping from 1 to 15%. The respective stable values of absorption and refractive indices are obtained in the range of ∼0.036–0.088 and ∼1.71–2.1. The linear and nonlinear optical susceptibilities as well as the nonlinear refractive index values were calculated. Additionally, Z-scan measurement was carried out at 532 nm wavelength. The nonlinear absorption coefficient and the imaginary part of third-order nonlinear susceptibility were estimated and corresponding values are obtained in the range of 0.35–123 (×10−5) cm/W and 0.084–29.7 (×10−8) e.s.u., respectively. Moreover, the optical limiting threshold values were obtained in the range of 2.57–6.34 kJ/cm2. The MZO/FTO films are showing strong optical limiting behavior compared to pristine. The output results suggest that MZO films are better contenders for optoelectronic applications.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ahmad, T., Khatoon, S., and Coolahan, K.: Structural, optical, and magnetic properties of nickel-doped tin dioxide nanoparticles synthesized by solvothermal method. J. Am. Ceram. Soc. 99, 1207 (2016).
2.Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S-J., and Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).
3.Mahadeva, S.K., Quan, Z-Y., Fan, J-C., Albargi, H.B., Gehring, G.A., Riazanova, A.V., Belova, L.M., and Rao, K.V.: Room temperature ferromagnetism and band gap engineering in Mg doped ZnO RF/DC sputtered films. MRS Online Proc. Libr. 1577, 1 (2013).
4.Li, Z-H., Cho, E-S., and Kwon, S.J.: Mg-doped ZnO thin films deposited by the atomic layer chemical vapor deposition for the buffer layer of CIGS solar cell. Appl. Surf. Sci. 314, 97 (2014).
5.Park, J.J., Song, J.K., Ha, J.S., and Park, S.M.: The effects of magnetic field on pulsed laser deposition of Mg-doped ZnO thin films. Appl. Surf. Sci. 258, 8542 (2012).
6.Park, W., Yi, G-C., and Jang, H.: Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO (0 ≤ x ≤ 0.49) thin films. Appl. Phys. Lett. 79, 2022 (2001).
7.Hashim, N.H., Subramani, S., Devarajan, M., and Ibrahim, A.R.: Properties of undoped ZnO and Mg doped ZnO thin films by sol–gel method for optoelectronic applications. J. Aust. Ceram. Soc. 53, 421 (2017).
8.Karthick, K., Srinivasan, D., and Christopher, J.B.: Fabrication of highly c-axis Mg doped ZnO on c-cut sapphire substrate by rf sputtering for hydrogen sensing. J. Mater. Sci.: Mater. Electron. 28, 11979 (2017).
9.Han, Q., Jeong, Y., Heo, J., Shin, C., Ryu, H., Park, M., Lee, W., Yoon, J., Yang, J., and Choi, H.: Magnesium-doped zinc oxide electrochemically grown on fluorine-doped tin oxide substrate. J. Nanosci. Nanotechnol. 12, 3677 (2012).
10.Zhang, Y., Lu, J., Ye, Z., Zeng, Y., Zhu, L., and Huang, J.: Quasi-aligned Zn1−xMgxO nanorods synthesized by thermal evaporation. J. Phys. D: Appl. Phys. 40, 3490 (2007).
11.Peng, J., Guo, J., Ding, S., Xu, Q., Li, H., Tan, X., and Zhao, X.: Mg-doped ZnO radial spherical structures via chemical vapor deposition. Rare Met. 30, 292 (2011).
12.Kurtaran, S., Aldag, S., Ofofoglu, G., Akyuz, I., and Atay, F.: Transparent conductive ZnO thin films grown by chemical spray pyrolysis: The effect of Mg. J. Mater. Sci.: Mater. Electron. 27, 8478 (2016).
13.Kulandaisamy, A.J., Reddy, J.R., Srinivasan, P., Babu, K.J., Mani, G.K., Shankar, P., and Rayappan, J.B.B.: Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping. J. Alloys Compd. 688, 422 (2016).
14.Amin, M., Shah, N.A., Bhatti, A.S., and Malik, M.A.: Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts. CrystEngComm 16, 6080 (2014).
15.Kaushal, A. and Kaur, D.: Effect of Mg content on structural, electrical and optical properties of Zn1−xMgxO nanocomposite thin films. Sol. Energy Mater. Sol. Cells 93, 193 (2009).
16.Shimakawa, S-i., Hashimoto, Y., Hayashi, S., Satoh, T., and Negami, T.: Annealing effects on Zn1−xMgxO/CIGS interfaces characterized by ultraviolet light excited time-resolved photoluminescence. Sol. Energy Mater. Sol. Cells 92, 1086 (2008).
17.Das, A., Roy, P.G., Dutta, A., Sen, S., Pramanik, P., Das, D., Banerjee, A., and Bhattacharyya, A.: Mg and Al co-doping of ZnO thin films: Effect on ultraviolet photoconductivity. Mater. Sci. Semicond. Process. 54, 36 (2016).
18.Shkir, M. and AlFaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).
19.Shkir, M., Yahia, I.S., AlFaify, S., Abutalib, M.M., and Muhammad, S.: Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies. J. Molec. Struc. 1110, 83 (2016).
20.Shkir, M., Yahia, I.S., Ganesh, V., Algarni, H., and AlFaify, S.: Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Mater. Lett. 176, 135 (2016).
21.Shkir, M., Kilany, M., and Yahia, I.S.: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: A systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923 (2017).
22.Yahia, I.S., Shkir, M., AlFaify, S., Ganesh, V., Zahran, H.Y., and Kilany, M.: Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications. Mater. Sci. Eng., C 72, 472 (2017).
23.Bundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E., Lorenz, M., and Grundmann, M.: Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974 (2003).
24.Decremps, F., Pellicer-Porres, J., Saitta, A.M., Chervin, J-C., and Polian, A.: High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B 65, 092101 (2002).
25.Kumar, K.D.A., Valanarasu, S., Kathalingam, A., Ganesh, V., Shkir, M., and AlFaify, S.: Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: A film for key optoelectronic applications. Appl. Phys. A 123, 801 (2017).
26.Wei, X., Man, B., Liu, M., Xue, C., Zhuang, H., and Yang, C.: Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys. B 388, 145 (2007).
27.Yahia, S.B., Znaidi, L., Kanaev, A., and Petitet, J.: Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 71, 1234 (2008).
28.Ganesh, V., Yahia, I.S., AlFaify, S., and Shkir, M.: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).
29.Springer, J., Rech, B., Reetz, W., Müller, J., and Vanecek, M.: Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Sol. Energy Mater. Sol. Cells 85, 1 (2005).
30.Shkir, M., Ganesh, V., AlFaify, S., Yahia, I.S., and Zahran, H.Y.: Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).
31.Tauc, J., Grigorovici, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627 (1966).
32.Shakir, M., Kushwaha, S., Maurya, K., Bhagavannarayana, G., and Wahab, M.: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009).
33.Shkir, M., AlFaify, S., Ganesh, V., and Yahia, I.S.: Facile one pot synthesis of PbS nanosheets and their characterization. Solid State Sci. 70, 81 (2017).
34.Ajili, M., Castagné, M., and Turki, N.K.: Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 53, 213 (2013).
35.Sengupta, J., Ahmed, A., and Labar, R.: Structural and optical properties of post annealed Mg doped ZnO thin films deposited by the sol–gel method. Mater. Lett. 109, 265 (2013).
36.Fang, D., Li, C., Wang, N., Li, P., and Yao, P.: Structural and optical properties of Mg-doped ZnO thin films prepared by a modified Pechini method. Cryst. Res. Technol. 48, 265 (2013).
37.Chongsri, K., Techitdheera, W., and Pecharapa, W.: Preparation, characterisation and photocurrent study of sol–gel-derived Al, Mg-doped ZnO transparent thin films. Internet J. Nanotechnol. 11, 263 (2014).
38.Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Yahia, I.S., Maidur, S.R., Patil, P.S., and AlFaify, S.: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Molec. Struc. 1173, 375 (2018).
39.Shkir, M., Ganesh, V., AlFaify, S., and Yahia, I.S.: Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J. Mater. Sci.: Mater. Electron. 28, 10573 (2017).
40.Ali Omar, M.: Elementary Solid State Physics (Addison-Wesley, Reading, MA, 1993).
41.Khatibani, A.B. and Rozati, S.: Optical and morphological investigation of aluminium and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber. Bull. Mater. Sci. 38, 319 (2015).
42.Yahia, I., Ganesh, V., Shkir, M., AlFaify, S., Zahran, H., Algarni, H., Abutalib, M., Al-Ghamdi, A.A., El-Naggar, A., and AlBassam, A.: An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications. Phys. B 496, 9 (2016).
43.Shkir, M., Khan, M.T., Ganesh, V., Yahia, I.S., Ul Haq, B., Almohammedi, A., Patil, P.S., Maidur, S.R., and AlFaify, S.: Influence of Dy doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 108, 609 (2018).
44.Sussman, A.: Space-charge-limited currents in copper phthalocyanine thin films. J. Appl. Phys. 38, 2738 (1967).
45.Frumar, M., Jedelský, J., Frumarova, B., Wagner, T., and Hrdlička, M.: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).
46.Xia, J., Liu, Y., Qiu, X., Mao, Y., He, J., and Chen, L.: Solvothermal synthesis of nanostructured CuInS2 thin films on FTO substrates and their photoelectrochemical properties. Mater. Chem. Phys. 136, 823 (2012).
47.Ticha, H. and Tichy, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).
48.Adair, R., Chase, L., and Payne, S.A.: Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989).
49.Farag, A.: Optical absorption studies of copper phthalocyanine thin films. Opt. Laser Technol. 39, 728 (2007).
50.Patil, P.S., Shkir, M., Maidur, S.R., AlFaify, S., Arora, M., Rao, S.V., Abbas, H., and Ganesh, V.: Key functions analysis of a novel nonlinear optical D-π-A bridge type (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one chalcone: An experimental and theoretical approach. Opt. Mater. 72, 427 (2017).
51.Maidur, S.R., Patil, P.S., Rao, S.V., Shkir, M., and Dharmaprakash, S.: Experimental and computational studies on second-and third-order nonlinear optical properties of a novel d-π-a type chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1-one. Opt. Laser Technol. 97, 219 (2017).
52.Agrawal, A., Ahmad Dar, T., Solanki, R., Phase, D.M., and Sen, P.: Study of nonlinear optical properties of pure and Mg-doped ZnO films. Phys. Status Solidi B 252, 1848 (2015).


Type Description Title
Supplementary materials

Shkir et al. supplementary material
Figures S1 and S2

 Word (4.1 MB)
4.1 MB

Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications

  • Mohd. Shkir (a1), Mohd. Arif (a2), Vanga Ganesh (a1), Mohamed A. Manthrammel (a1), Arun Singh (a2), Shivaraj R. Maidur (a3), Parutagouda Shankaragouda Patil (a3), Ibrahim S. Yahia (a1), Hamed Algarni (a1) and Salem AlFaify (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed