Skip to main content Accessibility help

Linear and nonlinear optical properties of aluminum borate crystal Al5BO9: Experiment and calculation

  • Donghai An (a1), Min Zhang (a2), Danni Li (a3), Shilie Pan (a4), Huimin Chen (a5), Zhihua Yang (a6), Yingtao Zhu (a7), Yi Sun (a7), Hui Zhang (a8) and Yangyang Li (a9)...


A noncentrosymmetric aluminum borate crystal, Al5BO9, was obtained via high-temperature solution method. Considering the structure diversities of Al5BO9, the single crystal structure was cautiously redetermined before the investigation. The fundamental building blocks of the structure are BO3 triangles, AlO4 tetrahedra, and AlO6 octahedra. Since Al5BO9 only consists of strong covalent B–O and Al–O bonds, it is worth investigating the structure–optical property relationship thoroughly, especially the linear and nonlinear optical properties. To gain further insight into the origin of the nonlinear optical response of Al5BO9, the electronic structure calculations, second harmonic generation (SHG)-weighted electron density, and dipole moment of polyhedra were analyzed in detail. All evidences deduced from calculated results indicate that the SHG contribution from the Al–O polyhedra is more pronounced than that of the BO3 group in Al5BO9, which is anticipated to open a window for the search and design of new inorganic materials.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:
c) e-mail:


Hide All
1. Becker, P.: Borate materials in nonlinear optics. Adv. Mater. 10, 979 (1998).
2. Chen, C.T., Ye, N., Lin, J., Jiang, J., Zeng, W.R., and Wu, B.C.: Computer-assisted search for nonlinear optical crystals. Adv. Mater. 11, 1071 (1999).
3. Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., and Kamimura, T.: Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. Mater. Sci. Eng., R 30, 1 (2000).
4. Katsumata, T., Yoshimura, T., Kanazawa, K., and Aizawa, H.: Growth of lithium borate crystals from the vitreous state. J. Mater. Res. 9, 8 (1994).
5. Ding, Y. and Miura, Y.: Stimulated surface crystallization of β- barium borate on glass due to ultrasonic treatment and second harmonic generation. J. Mater. Res. 11, 2 (1996).
6. Chen, C.T., Wu, B.C., Jiang, A.D., and You, G.M.: A new-type ultraviolet SHG crystal-beta-BaB2O4 . Sci. Sin., Ser. B 28, 235 (1985).
7. Chen, C.T., Wu, Y.C., Jiang, A.D., Wu, B.C., You, G.M., Li, R.K., and Lin, S.J.: New nonlinear-optical crystal: LiB3O5 . J. Opt. Soc. Am. B 6, 616 (1989).
8. Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T., and Nakai, S.: New nonlinear optical crystal: Cesium lithium borate. Appl. Phys. Lett. 67, 1818 (1995).
9. Wu, B.C., Tang, D.Y., Ye, N., and Chen, C.T.: Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 5, 105 (1996).
10. Yu, H.W., Wu, H.P., Pan, S.L., Yang, Z.H., Hou, X.L., Su, X., Jing, Q., Poeppelmeier, K.R., and Rondinelli, J.M.: Cs3Zn6B9O21: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. J. Am. Chem. Soc. 136, 1264 (2014).
11. Lin, H.H., Liang, H.B., Tian, Z.F., Su, Q., Xie, H.Y., and Ding, J.F.: Vacuum-ultraviolet–vis luminescence of dibarium magnesium orthoborate Ba2Mg(BO3)2 doped with Ce3+ and Eu2+ ions. J. Mater. Res. 21, 4 (2006).
12. Emme, H., Valldor, M., Pöttgen, R., and Huppertz, H.: Associating borate and silicate chemistry by extreme conditions: High-pressure synthesis, crystal structure, and properties of the new borates RE3B5O12 (RE = Er-Lu). Chem. Mater. 17, 2707 (2005).
13. Lu, C.H. and Godbole, S.V.: Synthesis and characterization of ultraviolet-emitting cerium-ion-doped SrBPO5 phosphors. J. Mater. Res. 19, 8 (2004).
14. Wu, H.P., Yu, H.W., Yang, Z.H., Hou, X.L., Su, X., Pan, S.L., Poeppelmeier, K.R., and Rondinelli, J.M.: Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 135, 4215 (2013).
15. Wu, Y.C., Sasaki, T., Nakai, S., okotani, A.Y., Tang, H., and Chen, C.T.: Structural, electronic and optical properties of novel carbonate fluorides ABCO3 F (A = K, Rb, Cs; B =Ca, Sr). Appl. Phys. Lett. 62, 2614 (1993).
16. Zhang, M., Su, X., Pan, S.L., Wang, Z., Zhang, H., Yang, Z.H., Zhang, B.B., Dong, L.Y., Wang, Y., Zhang, F.F., and Yang, Y.: Linear and nonlinear optical properties of K3B6O10Br single crystal: Experiment and calculation. J. Phys. Chem. C 118, 11849 (2014).
17. Hu, Z.G., Higashiyama, T., Yoshimura, M., Yap, Y.K., Mori, Y., and Sasaki, T.: A new nonlinear optical borate crystal K2Al2B2O7(KAB). Jpn. J. Appl. Phys. 37, L1093 (1998).
18. Liu, L.J., Liu, C.L., Wang, X.Y., Hu, Z.G., Li, R.K., and Chen, C.T.: Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals. Solid State Sci. 11, 841 (2009).
19. Zhou, Y., Yue, Y.C., Wang, J.N., Yang, F., Cheng, X.K., Cui, D.F., Peng, Q.J., Hu, Z.G., and Xu, Z.Y.: Nonlinear optical properties of BaAlBO3F2 Crystal. Opt. Express 17, 20033 (2009).
20. Chen, C.T., Lin, Z.S., and Wang, Z.Z.: The development of new borate-based UV nonlinear optical crystals. Appl. Phys. B 80, 1 (2005).
21. Zhou, J., Fang, W.H., Rong, C., and Yang, G.Y.: A series of open-framework aluminoborates templated by transition-metal complexes. Chem. Eur. J. 16, 4852 (2010).
22. Sokolova, Y.V., Azizov, A.V., Simonov, M.A., Leonyuk, N.I., and Belov, N.V.: The crystal structure of the synthetic ortho-tri-borate Al5(BO3)O6 . Dokl. Akad. Nauk SSSR 243, 655 (1978).
23. Gatta, G.D., Lotti, P., Merlini, M., Liermann, H.P., Fisch, M., Rotiroti, N., and Armbruster, T.: High-pressure behavior and phase stability of Al5BO9, a mullite-type ceramic material. J. Am. Ceram. Soc. 96, 2583 (2013).
24. Shin, Y., Lee, D.W., Hong, J., Kawk, K., and Ok, K.M.: Second-harmonic generating properties of polar noncentrosymmetric aluminoborate solid solutions, Al5−xGaxBO9 (0.0 ≤ x ≤ 0.5). Dalton Trans. 41, 3233 (2012).
25. Mazza, D., Vallino, M., and Busca, G.: Mullite-type structures in the system Al2O3-Me2O (Me = Na, K) and Al2O3-B2O3 . J. Am. Ceram. Soc. 75, 1929 (1992).
26. Sheldrick, G.M.: SHELXTL, Version 6.14; Bruker Analytical X-ray Instruments. Inc. Madison. WI. (2003).
27. Spek, A.L.: Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7 (2003).
28. Kubelka, P. and Munk, F.Z.: A contribution to the optics of pigments. Tech. Phys. 12, 593 (1931).
29. Kurtz, S.K. and Perry, T.T.: A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798 (1968).
30. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Rrfson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 568 (2005).
31. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).
32. Rashkeev, S.N., Lambrecht, W.R.L., and Segall, B.: Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys Rev. B. 57, 3905 (1998).
33. Rappe, A.M., Rabe, K., and Kaxiras, M.E.: Optimized pseudopotentials. Phys. Rev. B. 41, 1227 (1990).
34. Brown, I.D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 41, 244 (1985).
35. Vegas, A., Cano, F.H., and Garcis-Blance, S.: Refinement of aluminium orthoborate. Acta Crystallogr., Sect. B: Struct. Sci. 33, 3607 (1977).
36. Ju, J., Yang, T., Li, G.B., Liao, F.H., Wang, Y.X., You, L.P., and Lin, J.H.: PKU-5: An aluminoborate with novel octahedral framework topology. Chem. Eur. J. 10, 3901 (2004).
37. Cheng, C., Tang, C., Ding, X.X., Huang, X.T., Huang, Z.X., Qi, S.R., Hu, L., and Li, Y.X.: Catalytic synthesis of aluminum borate nanowires. Chem. Phys. Lett. 373, 626 (2003).
38. Wang, J., Sha, J., Yang, Q., Wang, Y.W., and Yang, D.R.: Synthesis of aluminium borate nanowires by sol–gel method. Mater. Res. Bull. 40, 1551 (2005).
39. Li, H.J., Li, Z.J., Qi, L.H., and Oy, H.B.: Effect of extrusion on the thermal expansion behavior of Al18B4O33, whisker–Mg composites. Scr. Mater. 61, 512 (2009).
40. Fisch, M., Armbrustera, T., Rentsch, D., Libowitzky, E., and Pettke, T.: Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle. J. Solid State Chem. 184, 70 (2011).
41. Van der Mooren, M.H., Rasing, T., and Bluyssen, H.J.A.: Determination of type I phase matching angles and conversion efficiency in KTP. Appl. Opt. 34, 934 (1995).
42. Debye, P.: Polar Molecules. (The Chemical Catalog Company Inc., New York, 1929); p. 99.
43. Halasyamani, P.S.: Asymmetric cation coordination in oxide materials: influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem. Mater. 16, 3586 (2004).
44. Zhang, J.J., Zhang, Z.H., Zhang, W.G., Zheng, Q.X., Sun, Y.X., Zhang, C.Q., and Tao, X.T.: Polymorphism of BaTeMo2O9: A new polar polymorph and the phase transformation. Chem. Mater. 23, 3752 (2011).
45. Mori-Sanchez, P., Cohen, A.J., and Yang, W.T.: Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100, 146401 (2008).
46. Cohen, A.J., Mori-Sanchez, P., and Yang, W.T.: Fractional charge perspective on the band gap in density-functional theory. Phys. Rev. B. 77, 115123 (2008).
47. Reshak, A.H., Kityk, I.V., and Auluck, S.: Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: Theory and experiment. J. Phys. Chem. B 114, 16705 (2010).
48. Reshak, A.H., Chen, X.A., Auluck, S., Kamarudin, H., Chyský, J., Wojciechowski, A., and Kityk, I.V.: Linear and nonlinear optical susceptibilities and the hyperpolarizability of borate LiBaB9O15 single-crystal: Theory and experiment. J. Phys. Chem. B 117, 14141 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

An supplementary material
Tables S1-S2 and Figures S1-S5

 Word (512 KB)
512 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed