Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T04:27:17.606Z Has data issue: false hasContentIssue false

Laser processed Al3Ti-based intermetallics: AlXTiY(Fe, Ni, or Cu)1±z

Published online by Cambridge University Press:  31 January 2011

Y. Ma
Affiliation:
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway
T. Arnesen
Affiliation:
Center of Industrial Research, P.O. Box 124 Blindern, 0314 Oslo 3, Norway
J. Gj⊘nnes
Affiliation:
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway
J. Taft⊘
Affiliation:
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway
Get access

Abstract

A new processing route for intermetallics starting from elemental metal powders and using laser beam heating has been investigated, by which three Al3Ti-based ternary intermetallic systems alloyed with Fe, Ni, or Cu, respectively, have been produced. Structures and compositions of five phases found in the three systems have been analyzed using optical metallography, transmission electron diffraction and microscopy, and thin foil energy dispersive x-ray spectrometry. The structure of three matrix phases in the three systems was identified as L12 type, which is consistent with previous work. The space group of the second phases in the two systems alloyed with Fe or Ni was reconfirmed or newly determined as Fm3m, using convergent beam electron diffraction. The lattice parameter measurements of these five found phases indicated atomic size-effect on the formation of intermetallics.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Naka, S., Thomas, M., and Khan, T., in High Temperature Intermetallics (Royal Society, London, 1991), p. 1.Google Scholar
2.Yamaguchi, M., in High Temperature Intermetallics (Royal Society, London, 1991), p. 15.Google Scholar
3.Yamaguchi, M., Umakoshi, Y., and Yamane, T., Philos. Mag. 55, 301 (1987).CrossRefGoogle Scholar
4.Djanarthany, S., Servant, C., and Penelle, R., J. Mater. Res. 6, 969 (1991).CrossRefGoogle Scholar
5.Umakoshi, Y., Yamaguchi, M., Yamane, T., and Hirano, T., Philos. Mag. 58, 651 (1988).CrossRefGoogle Scholar
6.Xu, J-H., Oguchi, T., and Freeman, A. J., Phys. Rev. B 36, 4186 (1987).CrossRefGoogle Scholar
7.Guo, X-Q., Podloucky, R., and Freeman, A. J., Phys. Rev. B 40, 2793 (1989).CrossRefGoogle Scholar
8.Jian-hua, Xu and Freeman, A. J., Phys. Rev. B 40, 11927 (1989).Google Scholar
9.Carlsson, A. E. and Meschter, P. J., J. Mater. Res. 4, 1060 (1989).CrossRefGoogle Scholar
10.Fu, C. L., J. Mater. Res. 5, 971 (1990).CrossRefGoogle Scholar
11.Carlsson, A. E. and Meschter, P. J., J. Mater. Res. 5, 2813 (1990).CrossRefGoogle Scholar
12.Hong, T., Watson-Yang, T. J., Freeman, A. J., Oguchi, T., and Jianhua, Xu, Phys. Rev. B 41, 12462 (1990).CrossRefGoogle Scholar
13.Feest, E. A. and Tweed, J. H., in High Temperature Intermetallics (Royal Society, London, 1991), p. 30.Google Scholar
14.Huang, S. C., Hall, E. L., and Gigliotti, M. F. X., J. Mater. Res. 3, 1 (1988).CrossRefGoogle Scholar
15.Schneibel, J. H., Becher, P. F., and Horton, J. A., J. Mater. Res. 3, 1272 (1988).CrossRefGoogle Scholar
16.Vecchio, K. S. and Williams, D. B., Acta Metall. 35, 2959 (1987).CrossRefGoogle Scholar
17.Gengxiang, Hu, Shipu, Chen, Xiaohua, Wu, and Xiaofu, Chen, J. Mater. Res. 6, 957 (1991).CrossRefGoogle Scholar
18.Kumar, K. S. and Pickens, J. R., Scripta Metall. 22, 1015 (1988).CrossRefGoogle Scholar
19.George, E. P., Porter, W. D., Henson, H. M., Oliver, W. C., and Oliver, B. F., J. Mater. Res. 4, 78 (1989).CrossRefGoogle Scholar
20.George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).CrossRefGoogle Scholar
21.Hong, T. and Freeman, A. J., J. Mater. Res. 6, 330 (1991).CrossRefGoogle Scholar
22.Raman, A. and Schubert, K., Z. Metallkde. 56, 99 (1965).Google Scholar
23.Seibold, A., Z. Metallkde. 72, 712 (1981).Google Scholar
24.Mazdiyasni, S., Miracle, D. B., Dimiduk, D. M., Mendiratta, M. G., and Subramanian, P. R., Scripta Metall. 23, 327 (1989).CrossRefGoogle Scholar
25.Frazier, W. E. and Benci, J. E., Scripta Metall. 25, 2267 (1991).CrossRefGoogle Scholar
26.Powers, W. O., Wert, J. A., and Turner, C D., Philos. Mag. 60, 227 (1989).CrossRefGoogle Scholar
27.Dahms, M., Schmelzer, F., Seeger, J., and Wildhagen, B., in High Temperature Intermetallics (Royal Society, London, 1991), p. 112.Google Scholar
28.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2, p. 958.Google Scholar
29.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2, p. 981.Google Scholar
30.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetaliic Phases (ASM, Metals Park, OH, 1985), Vol. 2, p. 1043.Google Scholar
31.Tanaka, M., J. Elec. Microsc. Technol. 13, 27 (1989).CrossRefGoogle Scholar
32.Cliff, G. and Lorimer, G. W., in Proc. Fifth Europ. Cong, on EM (Institute of Physics, London, 1972), p. 140.Google Scholar
33.Goldstein, J. I., in Introduction to Analytical Electron Microscopy (Plenum Press, New York, 1979), p. 83.CrossRefGoogle Scholar
34.Kelly, P. M., Jostons, A., Blake, R. G., and Napier, J. G., Phys. Status 1985), Vol. 2, p. 1043. Solidi (a) 31, 771 (1975).Google Scholar