Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T09:41:14.476Z Has data issue: false hasContentIssue false

Laser plasma diamond

Published online by Cambridge University Press:  31 January 2011

F. Davanloo
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
E. M. Juengerman
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
D. R. Jander
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
T. J. Lee
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
C. B. Collins
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
Get access

Abstract

Diamond-like films containing no hydrogen can be deposited from laser plasmas that are highly ionized. Growth rates of 0.5 μm/h over 100 cm2 areas have been realized on untreated substrates of a variety of materials including Si, Ge, ZnS, glass, and plastics. Measurements of optical properties and mass densities support the identification of this laser plasma diamond as a conglomerate of very fine grains of diamond polytypes in a matrix of other carbon forms.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., and Collins, C. B., J. Appl. Phys. 67, 2081 (1990).CrossRefGoogle Scholar
2Marquardt, C. L., Williams, R.T., and Nagel, D. J., in Plasma Synthesis and Etching of Electronic Materials, edited by Chang, R. P. H. and Abeles, B. (Mater. Res. Soc. Symp. Proc. 38, Pittsburgh, PA, 1985), p. 325.Google Scholar
3Richter, A., Scheibe, H. J., Pompe, W., Brzezinka, K.W., and Muhling, I., J. Non-Cryst. Solids 88, 131 (1986).CrossRefGoogle Scholar
4Sato, T., Furuno, S., Iguchi, S., and Hanabusa, M., Jpn. J. Appl. Phys. 26, L1487 (1987).CrossRefGoogle Scholar
5Robertson, J. and O'Reilly, E. P., Phys. Rev. B 35, 2946 (1987).CrossRefGoogle Scholar
6Sato, T., Furuno, S., Iguchi, S., and Hanabusa, M., Appl. Phys. A 45, 355 (1988).CrossRefGoogle Scholar
7Wagal, S. S., Juengerman, E. M., and Collins, C. B., Appl. Phys. Lett. 53, 187 (1988).CrossRefGoogle Scholar
8Collins, C. B., Davanloo, F., Juengerman, E. M., Osborn, W. R., and Jander, D. R., Appl. Phys. Lett. 54, 216 (1989).CrossRefGoogle Scholar
9Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and McHargue, C. J., Appl. Phys. Lett. 54, 2455 (1989).CrossRefGoogle Scholar
10Malshe, A. P., Chaudhari, S. M., Kanetkar, S. M., Ogale, S. B., Rajarshi, S.V., and Kshirsagar, S.T., J. Mater. Res. 4, 1238 (1989).CrossRefGoogle Scholar
11Merz, K. M., Hoffmann, R., and Balaban, A.T., J. Am. Chem. Soc. 109, 6742 (1987).CrossRefGoogle Scholar
12Tamor, M. A. and Wu, C. H., J. Appl. Phys. 67, 1007 (1990).CrossRefGoogle Scholar
13Savvides, N. and Window, B., J. Vac. Sci. Technol. A 3, 2386 (1985).CrossRefGoogle Scholar
14Savvides, N., J. Appl. Phys. 58, 518 (1985); 59, 4133 (1986).CrossRefGoogle Scholar
15Robertson, J., Adv. Phys. 32, 361 (1983).CrossRefGoogle Scholar
16Cohen-Tannoudji, C., Diu, B., and Laloe, F., Quantum Mechanics (Wiley, New York, 1977), Vol. 1, pp. 367383.Google Scholar
17Flügge, S., Practical Quantum Mechanics (Springer, New York, 1971), pp. 6467.Google Scholar
18Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
19Robertson, J., Adv. Phys. 35, 317 (1986).CrossRefGoogle Scholar
20Lenel, F.V., Mechanical Fundamentals of Consolidation, Metals Handbook, 9th ed. (American Society for Metals, 1978), Vol. 7, pp. 296307.Google Scholar
21Miyazawa, T., Misawa, S., Yoshida, S., and Gonda, S., J. Appl. Phys. 55, 188 (1984).CrossRefGoogle Scholar
22Kasi, S. R., Kang, H., and Rabalais, J.W., J. Vac. Sci. Technol. A 6, 1788 (1988).CrossRefGoogle Scholar
23Badziag, P., Verwoerd, W. S., Ellis, W. P., and Greiner, N. R., Nature 343, 244 (1990).CrossRefGoogle Scholar