Skip to main content Accessibility help

A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts

  • Jingwen Qian (a1), Zengying Zhao (a2), Zhenguang Shen (a3), Guoliang Zhang (a4), Zhijian Peng (a4) and Xiuli Fu (a5)...


Morphologically controllable copper sulfide (CuS) nanoneedle, nanowall, and nanosheet networks on copper substrates have been fabricated by a simple, facile, and fast method based on low-temperature chemical vapor deposition through simply adjusting the reaction conditions such as the temperature and flow rate of argon gas. The compositional and structural analyses indicated that all the obtained nano-networks were single-crystalline. And their growths were possibly controlled by a solid–liquid–solid mechanism. The photocatalytic activities of the different shaped CuS nanostructures have been evaluated by their photodegradation on rhodamine B and methylene blue in aqueous phase, which revealed that in both cases the CuS nanoneedles nano-network exhibited better performance than the other two nanostructures.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All

Contributing Editor: Xiaobo Chen



Hide All
1. Cheng, Z.G., Wang, S.Z., Wang, Q., and Geng, B.Y.: A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 12, 144 (2010).
2. Huang, Y.F., Xiao, H.N., Chen, S.G., and Wang, C.: Preparation and characterization of CuS hollow spheres. Ceram. Int. 35, 905 (2009).
3. Feng, X.P., Li, Y.X., Liu, H.B., Li, Y.L., Cui, S., Wang, N., Jiang, L., Liu, X.F., and Yuan, M.J.: Controlled growth and field emission properties of CuS nanowalls. Nanotechnology 18, 145706 (2007).
4. Chung, L.S. and Sohn, H.J.: Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J. Power Sources 108, 226 (2002).
5. He, Y.J., Yu, X.Y., and Zhao, X.L.: Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies. Mater. Lett. 61, 3014 (2007).
6. Zhang, Y.C., Hu, X.Y., and Tao, Q.A.: Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Commun. 132, 779 (2004).
7. Lakshmanan, S.B., Zou, X.J., Hossu, M., Ma, L., Yang, C., and Chen, W.: Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment. J. Biomed. Nanotechnol. 8, 883 (2012).
8. Deng, C.H., Ge, X.Q., Hu, H.M., Yao, L., Han, C.L., and Zhao, D.F.: Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent fenton-like catalytic activities. CrystEngComm 16, 2738 (2014).
9. Ding, T.Y., Wang, M.S., Guo, S.P., Guo, G.C., and Huang, J.S.: CuS nanoflowers prepared by a polyol route and their photocatalytic property. Mater. Lett. 62, 4529 (2008).
10. Huang, J.R., Wang, Y.Y., Gu, C.P., and Zhai, M.H.: Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst. Mater. Lett. 99, 31 (2013).
11. Basu, M., Sinha, A.K., Pradhan, M., Sarkar, S., Negishi, Y., Govind, , and Pal, T.: Evolution of hierarchical hexagonal stacked plates of CuS from liquid−liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ. Sci. Technol. 44, 6313 (2010).
12. Tanveer, M., Cao, C.B., Ali, Z., Aslam, I., Idrees, F., Khan, W.S., But, F.K., Tahir, M., and Mahmood, N.: Template free synthesis of CuS nanosheet-based hierarchical microspheres: An efficient natural light driven photocatalyst. CrystEngComm 16, 5290 (2014).
13. Hosseinpour, Z., Alemi, A., Khandar, A.A., Zhao, X.J., and Xie, Y.: A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. New J. Chem. 39, 5470 (2015).
14. Tanveer, M., Cao, C.B., Aslam, I., Ali, Z., Idrees, F., Khan, W.S., Tahir, M., Khalid, S., Nabi, G., and Mahmood, A.: Synthesis of CuS flowers exhibiting versatile photo-catalyst response. New J. Chem. 39, 1459 (2015).
15. Yang, Z.K., Song, L.X., Teng, Y., and Xia, J.: Ethylenediamine-modulated synthesis of highly monodisperse copper sulfide microflowers with excellent photocatalytic performance. J. Mater. Chem. A 2, 20004 (2014).
16. Saranya, M., Ramachandran, R., Samuel, E.J.J., Jeong, S.K., and Grace, A.N.: Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst. Powder Technol. 279, 209 (2015).
17. Larsen, T.H., Sigman, M., and Ghezelbash, A.: Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J. Am. Chem. Soc. 125, 5638 (2003).
18. Mao, G.Z., Dong, W.F., Kurth, D.G., and Mohwald, H.: Synthesis of copper sulfide nanorod arrays on molecular templates. Nano Lett. 4, 249 (2004).
19. Tan, C.H., Zhu, Y.L., Lu, R., Xue, P.C., Bao, C.Y., Liu, X.L., Fei, Z.P., and Zhao, Y.Y.: Synthesis of copper sulfide nanotube in the hydrogel system. Mater. Chem. Phys. 91, 44 (2005).
20. Lu, Q.Y., Gao, F., and Zhao, D.Y.: One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett. 2, 725 (2002).
21. Chen, J., Deng, S.Z., Xu, N.S., Wang, S.H., Wen, X.G., Yang, S.H., Yang, C.L., Wang, J.N., and Ge, W.K.: Field emission from crystalline copper sulphide nanowire arrays. Appl. Phys. Lett. 80, 3620 (2002).
22. Wang, S.H. and Yang, S.H.: Surfactant-assisted growth of crystalline copper sulphide nanowire arrays. Chem. Phys. Lett. 322, 567 (2000).
23. Ji, H.M., Cao, J.M., Feng, J., Chang, X., Ma, X.J., Liu, J.S., and Zheng, M.B.: Fabrication of CuS nanocrystals with various morphologies in the presence of a nonionic surfactant. Mater. Lett. 59, 3169 (2005).
24. Zou, J., Zhang, J.X., Zhang, B.H., Zhao, P.T., and Huang, K.X.: Low-temperature synthesis of copper sulfide nano-crystals of novel morphologies by hydrothermal process. Mater. Lett. 61, 5029 (2007).
25. Lu, J., Zhao, Y., Chen, N., and Xie, Y.: A novel in situ template-controlled route to CuS nanorods via transition metal liquid crystals. Chem. Lett. 32, 30 (2003).
26. Liao, X.H., Chen, N.Y., Xu, S., Yang, S.B., and Zhu, J.J.: A microwave assisted heating method for the preparation of copper sulfide nanorods. J. Cryst. Growth 252, 593 (2003).
27. Lu, F., Cai, W.P., Zhang, Y.G., Li, Y., Sun, F.Q., Heo, S.H., and Cho, S.Q.: Fabrication and field-emission performance of Zinc sulfide nanobeltarrays. J. Phys. Chem. C 111, 13385 (2007).
28. Ghodselahi, T., Vesaghi, M.A., Shafiekhani, A., Baghizadeh, A., and Lameii, M.: XPS study of the Cu@Cu2O core–shell nanoparticles. Appl. Surf. Sci. 255, 2730 (2008).
29. Wang, K.J., Li, G.D., Li, J.X., Wang, Q., and Chen, J.S.: Formation of single-crystalline CuS nanoplates vertically standing on flat substrate. Cryst. Growth Des. 7, 2265 (2007).
30. Meng, Z.D., Zhu, L., Choi, J.G., Park, C.Y., and Oh, W.C.: Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Res. Lett. 6, 459 (2011).
31. Weng, L. and Hodgson, S.N.B.: Multicomponent tellurite thin film materials with high refractive index. Opt. Mater. 19, 313 (2002).
32. Senthilkumaar, S., Rajendran, K., Banerjee, S., Chini, T.K., and Sengodan, V.: Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. Process. 11, 6 (2008).


Type Description Title
Supplementary materials

Qian et al. supplementary material
Supplementary figures

 Word (4.8 MB)
4.8 MB

A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts

  • Jingwen Qian (a1), Zengying Zhao (a2), Zhenguang Shen (a3), Guoliang Zhang (a4), Zhijian Peng (a4) and Xiuli Fu (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed