Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-19T13:08:17.319Z Has data issue: false hasContentIssue false

Kinetic mechanisms for mullite formation from sol-gel precursors

Published online by Cambridge University Press:  31 January 2011

Dong X. Li
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99164-2710
William J. Thomson
Affiliation:
Chemical Engineering Department, Washington State University, Pullman, Washington 99164-2710
Get access

Abstract

The reaction kinetics for the formation of mullite (3Al2O3 · 2SiO2) from sol-gel derived precursors were studied using dynamic x-ray diffraction (DXRD) and differential thermal analysis (DTA). The reaction kinetics of diphasic and single phase gels are compared and different reaction mechanisms are found for each gel. Mullite formation in the diphasic gel exhibits an Avrami type, diffusion-controlled growth mechanism with initial mullite formation temperatures of about 1250 °C and an activation energy on the order 103 kJ/mole. On the other hand, mullite formation from the single phase gel is a nucleation-controlled process with an initial formation temperature of 940 °C and a much lower activation energy of about 300 kJ/mole.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hoffman, D. W., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67 (7), 468471 (1984).CrossRefGoogle Scholar
2Ismail, M. B. M. U., Nakai, Z., Minegishi, K., and Somiya, S., Int. J. High Technol. Ceram. 2, 123134 (1986).Google Scholar
3Yoldas, B. E., J. Mater. Sci. 12, 12031208 (1977).CrossRefGoogle Scholar
4Huling, J. C. and Messing, G. L., J. Am. Ceram. Soc. 72 (9), 17251729 (1989).CrossRefGoogle Scholar
5Li, D. X. and Thomson, W. J., to be published in J. Am. Ceram. Soc.Google Scholar
6Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (7), 581587 (1988).Google Scholar
7Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69 (9), 652656 (1986).CrossRefGoogle Scholar
8Wei, W. and Halloran, J. W., J. Am. Ceram. Soc. 71 (3), 166172 (1988).CrossRefGoogle Scholar
9Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 70 (10), C245247 (1987).Google Scholar
10Avrami, M., J. Chem. Phys. 7, 11031112 (1939); 8, 212–224 (1940); 9, 177–184 (1941).CrossRefGoogle Scholar
11Rollett, A. D., Srolovitz, D. J., Doherty, R. D., and Anderson, M. P., Acta Metall. 37 (2), 627639 (1989).CrossRefGoogle Scholar
12Rosen, A., Burton, M. S., and Smith, G. V., Trans. AIME 230, 205215 (1964).Google Scholar
13Raghavan, V. and Cohen, M., Treatises on Solid State Chemistry, edited by N. B. Hannay, 5, 67127 (1975).Google Scholar
14Pask, J. A., Zhang, X. W., Tomsia, A. P., and Yoldas, B. E., J. Am. Ceram. Soc, 70 (10), 704707 (1987).Google Scholar
15Aksay, I. A. and Pask, J. A., J. Am. Ceram. Soc. 58 (11–12), 507–512 (1975).Google Scholar
16Mazdiyasni, K. S. and Brown, L. M., J. Am. Ceram. Soc. 55 (11), 548 (1972).Google Scholar
17Mroz, T. J. and Laughner, J. W., J. Am. Ceram. Soc. 72 (3), 508509 (1989).CrossRefGoogle Scholar
18Li, D. X. and Thomson, W. J. (unpublished work).Google Scholar
19Prochazka, S. and Klug, F. J., J. Am. Ceram. Soc. 66 (12), 874880 (1983).CrossRefGoogle Scholar
20Bansal, N. P., Doremus, R. H., Bruce, A. J., and Moynihan, C. T., J. Am. Ceram. Soc. 66 (4), 233238 (1983).Google Scholar