Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:01:57.168Z Has data issue: false hasContentIssue false

Isothermal Capacitance Transient Spectroscopy for Deep Levels in Co- and Mn-doped ZnO Single Crystals

Published online by Cambridge University Press:  31 January 2011

Naoki Ohashi*
Affiliation:
Advanced Materials Laboratory,b)National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Junzo Tanaka
Affiliation:
Advanced Materials Laboratory,b)National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Takeshi Ohgaki
Affiliation:
Advanced Materials Laboratory,b)National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Hajime Haneda
Affiliation:
Advanced Materials Laboratory,b)National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Mio Ozawa
Affiliation:
Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro, Tokyo 152–8552, Japan
Takaaki Tsurumi
Affiliation:
Department of Metallurgy and Ceramic Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro, Tokyo 152–8552, Japan
*
a)Address all correspondence to this author. e-mail: OHASHI.Naoki@nims.go.jp Moved from Tokyo Inst. Tech. to AML-NIMS on July 1st, 2000.
Get access

Abstract

Deep donor levels in ZnO single crystals doped with transition metal (TM; Co or Mn) were characterized by isothermal capacitance transient spectroscopy (ICTS) applied to ZnO-based Schottky junctions, Au/ZnO (0001) or Ag/ZnO (0001). The barrier height at the junction and donor concentration was not influenced by TM. A deep donor level at 0.28 eV was detected by ICTS; however, its energy dispersion and concentration was composition independent. The effect of doping with TM was found in the magnitude of leakage current; in other words, the leakage current at the Au/ZnO:Mn junction was lower than the other junctions on undoped or Co-doped crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
2.Mukae, K., Tsuda, T., and Nagasawa, I., Jpn. J. Appl. Phys. 16, 1361 (1977).CrossRefGoogle Scholar
3.Mahan, G.D., Levinson, L.M., and Philipp, H.R., J. Appl. Phys. 50, 2799 (1979).CrossRefGoogle Scholar
4.Hower, P.L. and Gupta, T.K., J. Appl. Phys. 50, 4847 (1979).CrossRefGoogle Scholar
5.Einzinger, R., Appl. Surf. Sci. 1, 329 (1978).CrossRefGoogle Scholar
6.Pike, G.E. and Seager, C.H., J. Appl. Phys. 50, 3414 (1979).CrossRefGoogle Scholar
7.Blatter, G. and Greuter, F., Phys. Rev. B, B33, 3952 (1986).CrossRefGoogle Scholar
8.Chiang, Y-M., Kingery, W.D., and Levinson, L.M., J. Appl. Phys. 53, 1765 (1982).CrossRefGoogle Scholar
9.Tanaka, S., Akita, C., Ohashi, N., Kawai, J., Haneda, H., and Tanaka, J., J. Solid State Chem. 105, 36 (1993).CrossRefGoogle Scholar
10.Ohashi, N., Tanaka, S., Tsurumi, T., Tanaka, J., and Fukunaga, O., J. Ceram. Soc. Jpn. 106, 914 (1998).CrossRefGoogle Scholar
11.Tanaka, S. and Takahashi, K., Key Eng. Mater. 157–158, 241 (1998).CrossRefGoogle Scholar
12.Schwing, U. and Hoffmann, B., J. Appl. Phys. 57, 5372 (1985).CrossRefGoogle Scholar
13.Yano, Y. and Morooka, H., J. Ceram. Soc. Jpn. 102, 305 (1994).CrossRefGoogle Scholar
14.Ohashi, N., Terada, Y., Ohgaki, T., Tsurumi, T., Fukunaga, O., Haneda, H., and Tanaka, J., J. Korean Phys. Soc. 35, S213 (1999).Google Scholar
15.Ohashi, N., Terada, Y., Ohgaki, T., Tanaka, S., Tsurumi, T., Fukunaga, O., Haneda, H., and Tanaka, J., Jpn. J. Appl. Phys. 38, 5028 (1999).CrossRefGoogle Scholar
16.Cordaro, J.F., Shim, Y., and May, J.E., J. Appl. Phys. 60, 4186 (1986).CrossRefGoogle Scholar
17.Sukkar, M.H. and Tuller, H.L., in Advance in Ceramics, ed. Yan, M.F. and Heuer, A.H. (American Ceramics Society, OH, 1980).Google Scholar
18.Tsuda, K. and Mukae, K., J. Ceram. Soc. Jpn. 97, 1211 (1989).CrossRefGoogle Scholar
19.Maeda, T. and Takata, M., J. Ceram. Soc. Jpn. 97, 1219 (1989).CrossRefGoogle Scholar
20.Nitayama, A., Sasaki, H., and Ikoma, T., Jpn. J. Appl. Phys. 19, L743 (1989).Google Scholar
21.Simpson, J.C. and Cordaro, J.F., J. Appl. Phys. 63, 1781 (1988).CrossRefGoogle Scholar
22.Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H., Appl. Phys. Lett. 77, 475 (2000).CrossRefGoogle Scholar
23.Yu, P., Tang, Z.K., Wong, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., J. Cryst. Growth, 184–5, 601 (1998).CrossRefGoogle Scholar
24.Reynolds, D.C., Look, D.C., and Jogai, B., J. Solid State Commun. 99, 869 (1996).CrossRefGoogle Scholar
25.Vanheusden, K., Warren, W.L., Seager, C.H., Tailant, D.R., Voigt, J.A., and Grande, B.E., J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
26.Ohashi, N., Nakata, T., Sekiguchi, T., Hosono, H., Mizuguchi, M., Tsurumi, T., Tanaka, J., and Haneda, H., Jpn. J. Appl. Phys. 38, L113 (1999).CrossRefGoogle Scholar
27.Sato, K. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 39, L555 (2000).CrossRefGoogle Scholar
28.Nielsen, J.W. and Dearborn, E.F., J. Am. Ceram. Soc. 64, 1762 (1960).Google Scholar
29.Okushi, H. and Tokumaru, Y., Jpn. J. Appl. Phys. 19, L335 (1980).CrossRefGoogle Scholar
30.Ohashi, N., Sekiguchi, T., Haneda, H., Terada, Y., Ohgaki, T., Tsurumi, T., Tanalka, J., and Fukunaga, O., Key Eng. Mater. 157–158, 227 (1998).CrossRefGoogle Scholar
31.Tanaka, S., Ohashi, N., Takahashi, K., and Takana, J., BUNSEKI 47, 1021 (1998).CrossRefGoogle Scholar
32.Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons, New York, 1981) p. 279.Google Scholar
33.Neville, R.C. and Mead, C.A., J. Appl. Phys. 41, 3795 (1970).CrossRefGoogle Scholar
34.Moormann, H., Kohl, D., and Heiland, G., Surf. Sci. 100, 302 (1980).CrossRefGoogle Scholar
35.Cowley, A.M. and Sze, S.M., J. Appl. Phys. 36, 3212 (1965).CrossRefGoogle Scholar
36.Ohashi, N. (unpublished).Google Scholar
37.Chang, C.Y. and Sze, S.M., Solid State Electron. 13, 2685 (1970).CrossRefGoogle Scholar
38.Roberts, G.L. and Crowell, C.R., Solid State Electron. 16, 29 (1973).CrossRefGoogle Scholar
39.Hirschwald, W., Bonasewicz, P., Ernst, L., Grade, M., Hofmann, D., Krebs, S., Littbarski, R., Neumann, G., Grunze, M., Kolb, D., and Schulz, H.J., Current Topics in Materials Science, edited by , Kaldis (North-Holland, Holland), Vol. 7, Chap. 3, p. 153.Google Scholar
40.Haneda, H., Tanaka, J., Hishita, S., Ohgaki, T., and Ohashi, N., Key Eng. Mater. 157–158, 221 (1998).CrossRefGoogle Scholar
41.Greuter, F. and Blatter, G., Semicond. Sci. Technol. 5, 111 (1990).CrossRefGoogle Scholar