Skip to main content Accessibility help

Irradiation responses and defect behavior of single-phase concentrated solid solution alloys

  • Tengfei Yang (a1), Congyi Li (a1), Steven J. Zinkle (a2), Shijun Zhao (a3), Hongbin Bei (a3) and Yanwen Zhang (a4)...


Single-phase concentrated solid solution alloys (SP-CSAs) are newly emerging advanced structural materials, which are defined as multiprincipal element solid solutions. SP-CSAs with more than four components in equimolar or near-equimolar ratios are also referred to as high-entropy alloys due to their high configurational entropy. SP-CSAs are potential structural materials in advanced nuclear energy systems due to their attractive mechanical properties. Therefore many investigations have been carried out to study the irradiation-induced structural damage and defect behavior in SP-CSAs. This paper reviews recent experimental results on the irradiation responses of various SP-CSAs, focusing on the accumulation of irradiation-induced structural damage, void swelling resistance, and solute segregation behavior. In addition, the characteristic defect behavior in SP-CSAs derived from ab initio and molecular dynamics simulations, as well as the challenges in the applications of SP-CSAs for the nuclear energy systems are briefly discussed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).
2.Guérin, Y., Was, G.S., and Zinkle, S.J.: Materials challenges for advanced nuclear energy systems. MRS Bull. 34, 10 (2009).
3.Zinkle, S.J. and Was, G.: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).
4.Odette, G., Alinger, M., and Wirth, B.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).
5.Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., and Ukai, S.: Advanced structural materials and cladding. MRS Bull. 34, 20 (2009).
6.Zinkle, S.J. and Snead, L.L.: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241 (2014).
7.Yvon, P.: Structural Materials for Generation IV Nuclear Reactors (Woodhead Publishing, Kidlington, U.K., 2016); pp. 569586.
8.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
9.Gludovatz, B., Hohenwarter, A., Thurston, K.V., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).
10.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
11.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
12.Hsu, C-Y., Yeh, J-W., Chen, S-K., and Shun, T-T.: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).
13.Huang, P.K., Yeh, J.W., Shun, T.T., and Chen, S.K.: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).
14.Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).
15.Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).
16.Wang, Y.P., Li, B.S., Ren, M.X., Yang, C., and Fu, H.Z.: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).
17.Hsu, C-Y., Wang, W-R., Tang, W-Y., Chen, S-K., and Yeh, J-W.: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44 (2010).
18.Chen, Y., Hong, U., Yeh, J., and Shih, H.: Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water. Scripta Mater. 54, 1997 (2006).
19.Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).
20.Tsai, K-Y., Tsai, M-H., and Yeh, J-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).
21.Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).
22.Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., and Shi, S.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).
23.Koppenaal, T., Yeh, W., and Cotterill, R.: Lattice defects in neutron irradiated αCu solid solution alloys. Philos. Mag. 13, 867 (1966).
24.Zinkle, S.: Microstructure and properties of copper alloys following 14-MeV neutron irradiation. J. Nucl. Mater. 150, 140 (1987).
25.English, C.: Low-dose neutron irradiation damage in FCC and BCC metals. J. Nucl. Mater. 108, 104 (1982).
26.Stathopoulos, A., English, C., Eyre, B., and Hirsch, P.: The effect of alloying additions on collision cascades in heavy-ion irradiated copper solid solutions. Philos. Mag. A 44, 309 (1981).
27.Robinson, T. and Jenkins, M.: Heavy-ion irradiation of nickel and nickel alloys. Philos. Mag. A 43, 999 (1981).
28.Hashimoto, N., Byun, T., and Farrell, K.: Microstructural analysis of deformation in neutron-irradiated fcc materials. J. Nucl. Mater. 351, 295 (2006).
29.Aidhy, D.S., Lu, C., Jin, K., Bei, H., Zhang, Y., Wang, L., and Weber, W.J.: Point defect evolution in Ni, NiFe, and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 69 (2015).
30.Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).
31.Jin, K., Guo, W., Lu, C., Ullah, M.W., Zhang, Y., Weber, W.J., Wang, L., Poplawsky, J.D., and Bei, H.: Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni–Fe solid solution alloys. Acta Mater. 121, 365 (2016).
32.Lu, C., Jin, K., Béland, L.K., Zhang, F., Yang, T., Qiao, L., Zhang, Y., Bei, H., Christen, H.M., and Stoller, R.E.: Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6, 19994 (2016).
33.Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).
34.He, M-R., Wang, S., Shi, S., Jin, K., Bei, H., Yasuda, K., Matsumura, S., Higashida, K., and Robertson, I.M.: Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 126, 182 (2017).
35.Lu, C., Yang, T., Jin, K., Gao, N., Xiu, P., Zhang, Y., Gao, F., Bei, H., Weber, W.J., Sun, K., Dong, Y., and Wang, L.: Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 127, 98 (2017).
36.Jin, M., Cao, P., and Short, M.P.: Thermodynamic mixing energy and heterogeneous diffusion uncover the mechanisms of radiation damage reduction in single-phase Ni–Fe alloys. Acta Mater. 147, 16 (2018).
37.Jin, K., Lu, C., Wang, L.M., Qu, J., Weber, W.J., Zhang, Y., and Bei, H.: Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Mater. 119, 65 (2016).
38.Levo, E., Granberg, F., Fridlund, C., Nordlund, K., and Djurabekova, F.: Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 490, 323 (2017).
39.Zhang, Y., Zhao, S., Weber, W.J., Nordlund, K., Granberg, F., and Djurabekova, F.: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 221 (2017).
40.Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).
41.Kumar, N.A.P.K., Li, C., Leonard, K.J., Bei, H., and Zinkle, S.J.: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).
42.Yang, T., Xia, S., Guo, W., Hu, R., Poplawsky, J.D., Sha, G., Fang, Y., Yan, Z., Wang, C., and Li, C.: Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scripta Mater. 144, 31 (2018).
43.He, M-R., Wang, S., Jin, K., Bei, H., Yasuda, K., Matsumura, S., Higashida, K., and Robertson, I.M.: Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Mater. 125, 5 (2016).
44.Wirth, B.D., Caturla, M.J., Diaz de la Rubia, T., Khraishi, T., and Zbib, H.: Mechanical property degradation in irradiated materials: A multiscale modeling approach. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 23 (2001).
45.Wirth, B.D., Odette, G.R., Marian, J., Ventelon, L., Young-Vandersall, J.A., and Zepeda-Ruiz, L.A.: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329–333(Part A), 103 (2004).
46.Malerba, L., Caro, A., and Wallenius, J.: Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J. Nucl. Mater. 382, 112 (2008).
47.Voter, A.F.: Introduction to the kinetic Monte Carlo method. In Radiation Effects in Solids, Sickafus, K.E., Kotomin, E.A., and Uberuaga, B.P., eds. (Springer, Dordrecht, The Netherlands, 2007); p. 1.
48.Chatterjee, A. and Vlachos, D.G.: An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14, 253 (2007).
49.Zhao, S.J., Stocks, G.M., and Zhang, Y.W.: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. Phys. Chem. Chem. Phys. 18, 24043 (2016).
50.Zhao, S., Egami, T., Stocks, G.M., and Zhang, Y.: Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys. Phys. Rev. Mater. 2, 013602 (2018).
51.Chen, W., Ding, X., Feng, Y., Liu, X., Liu, K., Lu, Z.P., Li, D., Li, Y., Liu, C.T., and Chen, X-Q.: Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. J. Mater. Sci. Technol. 34, 355 (2017).
52.Middleburgh, S.C., King, D.M., Lumpkin, G.R., Cortie, M., and Edwards, L.: Segregation and migration of species in the CrCoFeNi high entropy alloy. J. Alloy. Comp. 599, 179 (2014).
53.Ullah, M.W., Aidhy, D.S., Zhang, Y., and Weber, W.J.: Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys. Acta Mater. 109, 17 (2016).
54.Chakraborty, D. and Aidhy, D.S.: Cr-induced fast vacancy cluster formation and high Ni diffusion in concentrated Ni–Fe–Cr alloys. J. Alloy. Comp. 725(Suppl. C), 449 (2017).
55.Béland, L.K., Lu, C., Osetskiy, Y.N., Samolyuk, G.D., Caro, A., Wang, L., and Stoller, R.E.: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).
56.Béland, L.K., Osetsky, Y.N., and Stoller, R.E.: The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades. Acta Mater. 116, 136 (2016).
57.Koch, L., Granberg, F., Brink, T., Utt, D., Albe, K., Djurabekova, F., and Nordlund, K.: Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. J. Appl. Phys. 122, 105106 (2017).
58.Zhao, S., Velisa, G., Xue, H., Bei, H., Weber, W.J., and Zhang, Y.: Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 125, 231 (2017).
59.Zhao, S., Osetsky, Y., and Zhang, Y.: Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo, and NiCoCr. Acta Mater. 128, 391 (2017).
60.Osetsky, Y.N., Béland, L.K., and Stoller, R.E.: Specific features of defect and mass transport in concentrated fcc alloys. Acta Mater. 115, 364 (2016).
61.Bonny, G., Castin, N., and Terentyev, D.: Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).
62.Zhao, S., Osetsky, Y.N., and Zhang, Y.: Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. J. Alloy. Comp. 701, 1003 (2017).
63.Velişa, G., Wendler, E., Zhao, S., Jin, K., Bei, H., Weber, W., and Zhang, Y.: Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys. Mater. Res. Lett. 6, 136 (2018).
64.Kohyama, A., Hishinuma, A., Gelles, D.S., Klueh, R.L., Dietz, W., and Ehrlich, K.: Low-activation ferritic and martensitic steels for fusion application. J. Nucl. Mater. 233, 138 (1996).
65.Velişa, G., Ullah, M.W., Xue, H., Jin, K., Crespillo, M.L., Bei, H., Weber, W.J., and Zhang, Y.: Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Mater. 135, 54 (2017).
66.Ming, K., Bi, X., and Wang, J.: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scripta Mater. 137, 88 (2017).
67.Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).
68.Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J.J., Liaw, P.K., and Zhang, Y.: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 123, 285 (2017).
69.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
70.Kuznetsov, A.V., Shaysultanov, D.G., Stepanov, N.D., Salishchev, G.A., and Senkov, O.N.: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng., A 533, 107 (2012).
71.He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).


Type Description Title
Supplementary materials

Yang et al. supplementary material
Figures S1-S3

 Word (2.6 MB)
2.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed