Skip to main content Accessibility help
×
Home

Irradiation resistance of nanostructured interfaces in Zr–Nb metallic multilayers

  • Elton Y. Chen (a1), Chaitanya Deo (a2) and Rémi Dingreville (a3)

Abstract

Irradiation resistance of metallic nanostructured multilayers is determined by the interactions between defects and phase boundaries. However, the dose-dependent interfacial morphology evolution can greatly change the nature of the defect–boundary interaction mechanisms over time. In the present study, we used atomistic models combined with a novel technique based on the accumulation of Frenkel pairs to simulate irradiation processes. We examined dose effects on defect evolutions near zirconium–niobium multilayer phase boundaries. Our simulations enabled us to categorize defect evolution mechanisms in bulk phases into progressing stages of dislocation accumulation, saturation, and coalescence. In the metallic multilayers, we observed a phase boundary absorption mechanism early on during irradiation, while at higher damage levels, the increased irradiation intermixing triggered a phase transformation in the Zr–Nb mixture. This physical phenomenon resulted in the emission of a large quantity of small immobile dislocation loops from the phase boundaries.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: chaitanya.deo@me.gatech.edu

References

Hide All
1.Zhang, X., Hattar, K., Chen, Y., Shao, L., Li, J., Sun, C., Yu, K., Li, N., Taheri, M.L., Wang, H., Wang, J., and Nastasi, M.: Radiation damage in nanostructured materials. Prog. Mater. Sci. 96, 217321 (2018).
2.Rose, M., Balogh, A.G., and Hahn, H.: Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res., Sect. B 127, 119122 (1997).
3.Radiguet, B., Etienne, A., Pareige, P., Sauvage, X., and Valiev, R.: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43, 73387343 (2008).
4.Demkowicz, M.J., Anderoglu, O., Zhang, X., and Misra, A.: The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. J. Mater. Res. 26, 16661675 (2011).
5.Li, J., Yu, K.Y., Chen, Y., Song, M., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Nano Lett. 15, 29222927 (2015).
6.Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).
7.Chen, F., Tang, X., Yang, Y., Huang, H., Liu, J., Li, H., and Chen, D.: Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance. J. Nucl. Mater. 468, 164170 (2016).
8.Sun, C., Bufford, D., Chen, Y., Kirk, M.A., Wang, Y.Q., Li, M., Wang, H., Maloy, S.A., and Zhang, X.: In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance. Sci. Rep. 4, 3737 (2014).
9.Li, J., Fan, C., Ding, J., Xue, S., Chen, Y., Li, Q., Wang, H., and Zhang, X.: In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au. Sci. Rep. 7, 39484 (2017).
10.Beyerlein, I.J., Mayeur, J.R., Zheng, S., Mara, N.A., Wang, J., and Misra, A.: Emergence of stable interfaces under extreme plastic deformation. Proc. Natl. Acad. Sci. U. S. A. 111, 201319436 (2014).
11.Beyerlein, I.J., Demkowicz, M.J., Misra, A., and Uberuaga, B.P.: Defect-interface interactions. Prog. Mater. Sci. 74, 125210 (2015).
12.Chen, E.Y., Dingreville, R., and Deo, C.: Misfit dislocation networks in semi-coherent miscible phase boundaries: An example for U–Zr interfaces. Comput. Mater. Sci. 154, 194203 (2018).
13.Wang, J., Zhang, R.F., Zhou, C.Z., Beyerlein, I.J., and Misra, A.: Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast. 53, 4055 (2014).
14.Chen, Y., Shao, S., Liu, X-Y., Yadav, S.K., Li, N., Mara, N., and Wang, J.: Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater. 126, 552563 (2017).
15.Vattré, A., Jourdan, T., Ding, H., Marinica, M.C., and Demkowicz, M.J.: Non-random walk diffusion enhances the sink strength of semicoherent interfaces. Nat. Commun. 7, 10424 (2016).
16.Zarnas, P.D., Dingreville, R., and Qu, J.: Mechanics of point defect diffusion near dislocations and grain boundaries: A chemomechanical framework. Comput. Mater. Sci. 144, 99112 (2018).
17.Heinisch, H.L., Gao, F., and Kurtz, R.J.: The effects of interfaces on radiation damage production in layered metal composites. J. Nucl. Mater. 329, 924928 (2004).
18.Zhang, L. and Demkowicz, M.J.: Morphological stability of Cu–Nb nanocomposites under high-energy collision cascades. Appl. Phys. Lett. 103, 061604 (2013).
19.Zhang, L. and Demkowicz, M.J.: Radiation-induced mixing between metals of low solid solubility. Acta Mater. 76, 135150 (2014).
20.Nikulina, A.V.: Zirconium–niobium alloys for core elements of pressurized water reactors. Met. Sci. Heat Treat. 45, 287292 (2003).
21.Burgers, W.G.: On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561586 (1934).
22.Pitsch, W. and Schrader, A.: Die Ausscheidungsform des ε-Karbids im Ferrit und im Martensit beim Anlassen. Arch Eisenhüttenwes 29, 715721 (1958).
23.Ribis, J., Doriot, S., and Onimus, F.: Shape, orientation relationships and interface structure of beta-Nb nano-particles in neutron irradiated zirconium alloy. J. Nucl. Mater. 511, 1829 (2018).
24.Chartier, A., Onofri, C., Van Brutzel, L., Sabathier, C., Dorosh, O., and Jagielski, J.: Early stages of irradiation induced dislocations in urania. Appl. Phys. Lett. 109, 181902 (2016).
25.Jostsons, A. and Farrell, K.: Structural damage and its annealing response in neutron irradiated magnesium. Radiat. Eff. 15, 217225 (1972).
26.Griffiths, M.: Evolution of microstructure in hcp metals during irradiation. J. Nucl. Mater. 205, 225241 (1993).
27.Northwood, D.O., Gilbert, R.W., Bahen, L.E., Kelly, P.M., Blake, R.G., Jostsons, A., Madden, P.K., Faulkner, D., Bell, W., and Adamson, R.B.: Characterization of neutron irradiation damage in zirconium alloys–an international “round-robin” experiment. J. Nucl. Mater. 79, 379394 (1979).
28.Griffiths, M., Loretto, M.H., and Smallman, R.E.: Anisotropic distribution of dislocation loops in HVEM-irradiated Zr. Philos. Mag. A 49, 613624 (1984).
29.Griffiths, M.: Microstructure evolution in Zr alloys during irradiation: Dose, dose rate, and impurity dependence. J. ASTM Int. 5, 18 (2007).
30.Griffiths, M.: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190218 (1988).
31.Abriata, J.P. and Bolcich, J.C.: The Nb–Zr (Niobium–Zirconium) system. J. Phase Equilib. 3, 3444 (1982).
32.Khachaturyan, A.G., Shapiro, S.M., and Semenovskaya, S.: Adaptive phase formation in martensitic transformation. Phys. Rev. B 43, 10832 (1991).
33.Paine, B.M. and Averback, R.S.: Ion beam mixing: Basic experiments. Nucl. Instrum. Methods Phys. Res., Sect. B 7, 666675 (1985).
34.Averback, R.S.: Fundamental aspects of ion beam mixing. Nucl. Instrum. Methods Phys. Res., Sect. B 15, 675687 (1986).
35.Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Spring Science+Business Media, New York, NY, 2016).
36.Nastasi, M., Michael, N., Mayer, J., Hirvonen, J.K., and James, M.: Ion-solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, U.K., 1996).
37.Fernandez, G.: Thermodynamic analysis of the stable phases in the Zr–Nb system and calculation of the phase diagram. Z. Met. 82, 478487 (1991).
38.Balluffi, R.W.: High angle grain boundaries as sources or sinks for point defects; Technical Report; Massachusetts Institute of Technology: Cambridge, Department of Materials Science and Engineering, 1979.
39.Han, W.Z., Demkowicz, M.J., Fu, E.G., Wang, Y.Q., and Misra, A.: Effect of grain boundary character on sink efficiency. Acta Mater. 60, 63416351 (2012).
40.Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 6265 (2007).
41.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).
42.Smirnova, D.E. and Starikov, S.V.: An interatomic potential for simulation of Zr–Nb system. Comput. Mater. Sci. 129, 259272 (2017).
43.Sand, A.E., Dequeker, J., Becquart, C.S., Domain, C., and Nordlund, K.: Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J. Nucl. Mater. 470, 119127 (2016).
44.Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).
45.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
46.Crocombette, J-P., Chartier, A., and Weber, W.J.: Atomistic simulation of amorphization thermokinetics in lanthanum pyrozirconate. Appl. Phys. Lett. 88, 051912 (2006).
47.Balboa, H., Van Brutzel, L., Chartier, A., and Le Bouar, Y.: Damage characterization of (U, Pu) O under irradiation by molecular dynamics simulations. J. Nucl. Mater. 512, 440449 (2018).
48.Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 18181823 (2010).
49.Nordlund, K., Zinkle, S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R., Suzudo, T., Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L., and Simeone, D.: Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9, 1084 (2018).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed