Skip to main content Accessibility help

Iron-silica and nickel-silica nanocomposites prepared by high energy ball milling

  • Anna Corrias (a1), Guido Ennas (a1), Anna Musinu (a1), Giorgio Paschina (a1) and Daniela Zedda (a1)...


Metal-silica nanocomposites with different metal volume fractions have been prepared via solid state exchange reactions induced by ball milling followed by a reduction treatment in H2 flux. In nickel-containing mixtures oxygen transfers directly from NiO to Si while NiO is reduced to Ni. When NiO is present in a large ratio, its excess can be reduced by a thermal treatment in H2 flux. Nickel crystallites are obtained with nanometer size in the milling process and there is no significant growth during thermal treatment. Similar process conditions applied to Fe-containing mixtures give rise to a more complex reaction path which prevents the complete conversion of Fe(III) to Fe. Nickel-silica and iron-silica nanocomposites are also produced by ball milling mixtures of either nickel or iron with amorphous silica.



Hide All
1.Koch, C. C., in Materials Science and Technology: A Comprehensive Treatment, edited by Cahn, R. W., Haasen, P., and Kramer, E. J. (VCH Verlagsgeselleschaft, Weinhein, 1991), Vol. 5, Chap. 5.
2.Froes, F. H. and deBarbadillo, J. J., Structural Applications of Mechanical Alloying (ASM INTERNATIONAL, Materials Park, OH, 1993).
3.Schaffer, G. B. and McCormick, P. G., Metall. Trans. A21, 2789 (1990).
4.Matteazzi, P. and Caër, G. L. Le, Hyperf. Inter. 68, 177 (1991).
5.Basset, D., Matteazzi, P., and Miani, F., Mater. Sci. Eng. A168, 149 (1993).
6.Pardavi-Horvath, M. and Tackás, L., J. Appl. Phys. 73, 6958 (1993).
7.Tackás, L., Nanostr. Mater. 2, 241 (1993).
8.Tackás, L. and Pardavi-Horvath, M., J. Appl. Phys. 75, 5864 (1994).
9.Ambrose, T., Gavrin, A., and Chien, C. L., J. Magn. Magn. Mater. 116, L311 (1992).
10.Linderoth, S. and Pedersen, M. S., Appl. Phys. 75, 5867 (1994). Julian, C., Giri, A. K., Morales, M. P., and Gonzáles, J. M., Scripta Metall. Mater. 33, 1079 (1995).
12.Chien, C. L., J. Appl. Phys. 69, 5267 (1991).
13.Roy, R., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 241.
14.Coenen, J. W. E., Appl. Catal. 56, 65 (1989).
15.Roy, S., Das, D., Chakravorty, D., and Agrawal, D. C., J. Appl. Phys. 74, 4746 (1993).
16.Roy, S. and Chakravorty, D., J. Mater. Res. 9, 2314 (1993).
17.Wang, J. P. and Luo, H. L., J. Appl. Phys. 75, 7425 (1994).
18.Shull, R. D., Ritter, J. J., Shapiro, A. J., Swartzendruber, L. J., and Bennett, L. J., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L. E., Polk, D. E., Siegel, R. W., and Kear, B. H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 179.
19.Claussen, N., Garcia, D. E., and Janssen, R., J. Mater. Res. 11, 1884 (1996).
20.Unruh, K. M., Patterson, B. M., Beamish, J. R., Mulders, N., and Shah, S. I., J. Appl. Phys. 68, 3015 (1990).
21.Warren, B. E., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 264.
22.Concas, G., Congiu, F., Corrias, A., Muntoni, C., Paschina, G., and Zedda, D., Z. Naturforsch. 51a, 915 (1996).
23.Corrias, A., Paschina, G., Sirigu, P., and Zedda, D., Mater. Sci. Forum 235–238, 199 (1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed