Skip to main content Accessibility help

Ion-beam irradiation and 244Cm-doping investigations of the radiation response of actinide-bearing crystalline waste forms

  • Sergey V. Yudintsev (a1), Andrey A. Lizin (a2), Tatiana S. Livshits (a3), Sergey V. Stefanovsky (a4), Sergey V. Tomilin (a5) and Rodney C. Ewing (a6)...


Candidate materials for actinide immobilization are subject to alpha-decay event doses that accumulate to values of more than 1020 alpha-decays per gram (tens displacements per atom, dpa) over the extended periods of geologic disposal. To evaluate the radiation-response of actinide-bearing materials, two experimental techniques have been used to accelerate the damage accumulation process: ion-beam irradiations and 244Cm-doping experiments. Based on modern characterization techniques, such as high-resolution transmission electron microscopy, and experimental results that involve ion-beam irradiation and chemical doping with highly active actinides, crystalline ceramics for the immobilization of actinides can be divided into three groups on the basis of their critical doses, D c, i.e., the dose required for amorphization at 300 K: (i) low resistance to radiation damage accumulation (D c ∼ 0.2 dpa) – murataite, Ti-perovskite, Fe-garnet; (ii) resistant (0.4 < D c < 0.6 dpa) – Al-garnet, Ti–Zr-pyrochlore, Al-perovskite; and (iii) highly resistant (D c > 0.8 dpa) – Zr-, Zr–Ti-, and Sn-pyrochlores. Phases with low critical temperatures (T c below 600 K) will not become amorphous in a deep geologic repository, as long as the temperature remains between 300 and 550 K, but rather, they will remain crystalline. Only Zr-rich pyrochlore is fully resistant to radiation damage and will remain crystalline over the entire period of its disposal.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Contributing Editor: William J. Weber



Hide All
1. Kopyrin, A.A., Karelin, A.I., and Karelin, V.A.: Technology of Production and Radiochemical Reprocessing of Nuclear Fuel (Russ. Atomenergoizdat, Moscow, Russia, 2006); 576 pp.
2. IAEA: Implications of Partitioning and Transmutation in Radioactive Waste Management (IAEA, Vienna, Austria, 2004); 140 pp.
3. CEA: Treatment and Recycling of Spent Nuclear Fuel (CEA, Paris, France, 2008); 175 pp.
4. NEA, OECD: Minor Actinide Burning in Thermal Reactors; Report No. 6997; NEA, OECD: Paris, France, 2013; 78 pp.
5. Eckerman, K., Harrison, J., Menzel, H-G., Clement, C.H.: ICRP Publication 119. Compendium of dose coefficients based on ICRP publication 60. Ann. ICRP 41(Suppl.), 39 (2012).
6. IAEA: Library of Recommended Actinide Decay Data 2011 (IAEA, Vienna, 2013); 442 pp.
7. NEA, OECD: Fuels and Materials for Transmutation; Report No. 5419; NEA, OECD: Paris, France, 2005; 240 pp.
8. von Hippel, F., Ewing, R., Garwin, R., and Macfarlane, A.: Time to bury plutonium. Nature 485, 167 (2012).
9. Radioactive Waste Forms for the Future, Lutze, W. and Ewing, R. ed.; Elsevier Sci. Publ.: Amsterdam, 1988; 778 pp.
10. Stefanovsky, S.V., Yudintsev, S.V., Gieré, R., and Lumpkin, G.R.: Nuclear waste forms. In Energy, Waste, and the Environment: A Geochemical Perspective, Gieré, R. and Stille, P. eds.; Geol. Society, Special Publications, 236, Geological Society: London, UK, 2004; p. 37.
11. Laverov, N.P., Velichkin, V.I., Omelyanenko, B.I., Yudintsev, S.V., Petrov, V.A., and Bychkov, A.V.: Isolation of Spent Nuclear Materials: Geological and Geochemical Basis (IPE RAS, Moscow, Russia, 2008); 280 pp.
12. Pierce, E.M., McGrail, B.P., Martin, P.F., Marra, J.C., Arey, B.W., and Geiszler, K.N.: Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions. Appl. Geochem. 22, 1841 (2007).
13. Novikov, A.P., Kalymkov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., and Myasoedov, B.F.: Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314, 638 (2006).
14. Laverov, N.P., Yudintsev, S.V., Livshitz, T.S., Stefanovsky, S.V., Lukinykh, A.N., and Ewing, R.C.: Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes. Geochem. Int. 48, 1 (2010).
15. Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr.: Radiation effects in nuclear waste forms for high-level radioactive waste. Progr. Nucl. Energ. 29(2), 63 (1995).
16. Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.H.K., Vance, E.R., and Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 1434 (1998).
17. Ewing, R.C. and Weber, W.J.: Actinide waste forms and radiation effects. In The Chemistry of the Actinide and Transactinide Elements, Vol. 6, Morss, L.R., Edelstein, N.M., and Fuger, J. eds.; Springer: Dordrecht, The Netherlands, 2010; p. 3813.
18. Weber, W.J. and Ewing, R.C.: Ceramic waste forms for uranium and transuranium elements. In Uranium: Cradle to Grave, Burns, P.C. and Sigmon, G.E. eds.; Mineralogical Association of Canada, Short Course Series, 43, 2013; p. 317.
19. Lumpkin, G.R. and Geisler-Wierwille, T.: Minerals and natural analogues. In Comprehensive Nuclear Materials, Vol. 5, Konings, R.J.M. ed.; Elsevier: Amsterdam, 2012; p. 563.
20. Weber, W.J., Wald, J.W., and Matzke, Hj.: Self-radiation damage in Gd2Ti2O7 . Mater. Lett. 3, 173 (1985).
21. Ewing, R.C., Weber, W.J., and Lian, J.: Nuclear waste disposal—Pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 (2004).
22. Karioris, F.G., Appaji Gowda, K., Cartz, L., and Labbe, J.C.: Damage cross-sections of heavy ions in crystal structures. J. Nucl. Mater. 108109, 748 (1982).
23. Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, NewYork, 1985).
24. Ewing, R.C.: Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. U. S. A. 96, 3432 (1999).
25. Weber, W.J. and Ewing, R.C.: Plutonium immobilization and radiation effects. Science 289, 2051 (2000).
26. Strachan, D.M., Scheele, R.D., Buck, E.C., Icenhower, J.P., Kozelisky, A.E., Sell, R.L., Elovich, R.J., and Buchmiller, W.C.: Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore. J. Nucl. Mater. 345, 109 (2005).
27. Strachan, D.M., Scheele, R.D., Buck, E.C., Kozelisky, A.E., Sell, R.L., Elovich, R.J., and Buchmiller, W.C.: Radiation damage effects in candidate titanates for Pu disposition: Zirconolite. J. Nucl. Mater. 372, 16 (2008).
28. Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., and Livshits, T.S.: Radiation and chemical resistance of synthetic ceramics based on ferritic garnet. Radiochemistry 50(4), 432 (2008).
29. Muller, I. and Weber, W.J.: Plutonium in crystalline ceramics and glasses. MRS Bull. 26(1), 698 (2001).
30. Weber, W.J., Navrotsky, A., Stefanovsky, S., Vance, E.R., and Vernaz, E.: Material science of high-level waste immobilization. MRS Bull. 24, 46 (2009).
31. Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V.G.: Radiation stability of gadolinium zirconates: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999).
32. Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium. J. Mater. Res. 12, 1946 (1997).
33. Lian, J., Yudintsev, S.V., Stefanovsky, S.V., Wang, L.M., and Ewing, R.C.: Ion beam irradiation of U-, Th- and Ce-doped pyrochlores. J. Alloys Compd. 444445, 429 (2007).
34. Laverov, N.P., Yudintsev, S.V., Yudintseva, T.S., Stefanovsky, S.V., Ewing, R.C., Lian, J., Utsonomiya, S., and Wang, L.M.: Effect of radiation on properties of confinement matrices for immobilization of actinide-bearing wasters. Geol. Ore Deposits 45, 423 (2003).
35. Weber, W.J., Ewing, R.C., and Meldrum, A.: The kinetics of alpha-decay induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J. Nucl. Mater. 250, 147 (1997).
36. Mosley, W.C.: Self-radiation damage in curium-244 oxide and aluminate. J. Am. Ceram. Soc. 54, 475 (1971).
37. Rusin, J.M., Gray, W.J., and Wald, J.W.: Multibarrier Waste Forms—Part II. Characterization and Evaluation. Report No. PNL-2668-2 (Pacific Northwest Laboratory, Richland, WA, 1979).
38. Turcotte, R.P., Wald, J.M., Roberts, F.P., and Rusin, J.M.: Radiation damage in nuclear waste ceramics. J. Am. Ceram. Soc. 65, 589 (1982).
39. Wald, J.W. and Offermann, P.: A study of radiation effects in curium-doped Gd2Ti2O7 (pyrochlore) and CaZrTi2O7 (zirconolite). In Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982) p. 369.
40. Wald, J.W. and Weber, W.J.: Effects of self-radiation damage on the leachability of actinide-host phases. In Nuclear Waste Management. Volume 8 of Advances in Ceramics, Wicks, G.G. and Ross, W.A. eds.; The American Ceramic Society: Columbus, OH, 1984; p. 71.
41. Weber, W.J., Wald, J.W., and Matzke, Hj.: Self-radiation damage in actinide host phases of nuclear waste forms. In Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985) p. 679.
42. Weber, W.J., Wald, J.W., and Matzke, Hj.: Effects of self-irradiation damage in Cm-doped Gd2Ti2O7, and CaZrTi2O7 . J. Nucl. Mater. 138, 196 (1986).
43. Weber, W.J. and Matzke, Hj.: Radiation effects in actinide host phases. Radiat. Eff. 98, 93 (1986).
44. Mitamura, H., Matsumoto, S., Miyazaki, T., White, T.J., Nukaga, K., Togashi, Y., Sagawa, T., Tashiro, S., Levins, D.M., and Kikuchi, A.: Self-irradiation damage of a curium-doped titanate ceramic containing sodium-rich high level nuclear waste. J. Am. Ceram. Soc. 73, 3433 (1990).
45. Mitamura, H., Matsumoto, S., Hart, K.P., Miyazaki, T., Vance, E.R., Tamura, Y., Togashi, Y., and White, T.J.: Aging effect on curium-doped titanate ceramic containing sodium-rich high level nuclear waste. J. Am. Ceram. Soc. 75, 392 (1992).
46. Mitamura, H., Matsumoto, S., Stewart, M.W.A., Tsuboi, T., Hashimoto, M., Vance, E.R., Hart, K.P., Togashi, Y., Kanazawa, H., Ball, C.J., and White, T.J.: α-Decay damage effects in curium-doped titanate ceramic containing sodium-free high level nuclear waste. J. Am. Ceram. Soc. 77, 2255 (1994).
47. Mitamura, H., Matsumoto, S., Tusboi, T., Vance, E.R., Begg, B.D., and Hart, K.P.: Alpha-decay damage in Cm-doped perovskite. In Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995) p. 1405.
48. Burakov, B.E.: Crystalline mineral-like matrices for immobilization of actinides. Dr. Sci. Thesis, St-Petersburgh State University, St-Petersburgh, Russia, 2013.
49. Matzke, Hj. and van Geel, J.: Incorporation of Pu and other actinides in borosilicate glass and in waste ceramics. In Disposal of Weapon Plutonium, Merz, E.R. and Walter, C.E. eds.; Kluwer Academic Publishers: The Netherlands, 1996; p. 93.
50. Yudintsev, S.V., Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., and Stefanovsky, S.V.: Alpha-decay induced amorphization in Cm-doped Gd2TiZrO7 . J. Nucl. Mater. 385, 200 (2009).
51. Zhang, J., Livshits, T.S., Lizin, A.A., Hu, Q., and Ewing, R.C.: Irradiation of synthetic garnet by heavy ions and a-decay of 244Cm. J. Nucl. Mater. 407, 137 (2010).
52. Livshits, T.S., Lizin, A.A., Zhang, J., and Ewing, R.C.: Amorphization of rare earth aluminate garnets at ion irradiation and decay of 244Cm admixture. Geol. Ore Deposits 52(4), 267 (2010).
53. Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., Omelyanenko, B.I., and Nikonov, B.S.: Murataite matrices for actinide wastes. Radiochemistry 53, 229 (2011).
54. Icenhower, J.P., Strachan, D.M., McGrail, B.P., Sheele, R.D., Rodrigues, E.A., Steele, J.L., and Legore, V.L.: Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium. Am. Mineral. 91, 39 (2006).
55. Stefanovsky, S.V., Yudintsev, S.V., and Myasoedov, B.F.: Radiation effects in americium-doped zirconate ceramics. Dokl. Chem. 447, 296 (2012).
56. Burakov, B.E., Anderson, E.B., Zamoryanskaya, M.V., Yagovkina, M.A., and Nikolaeva, E.V.: Synthesis and characterization of cubic zirconia, (Zr,Gd,Pu)O2, doped with 238Pu. In Scientific Basis for Nuclear Waste Management XXV, edited by McGrail, B.P. and Cragnolino, G.A. (Mater. Res. Soc. Symp. Proc. 713, Pittsburgh, PA, 2002) p. 333.
57. Sykora, R.E., Raison, P.E., and Haire, R.G.: Self-irradiation induced structural changes in the transplutonium pyrochlores An2Zr2O7 (An = Am, Cf). J. Solid State Chem. 178, 578 (2005).
58. Lumpkin, G.R., Smith, K.L., and Blake, R.G.: TEM study of radiation damage and annealing of neutron irradiated zirconolite. In Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996) p. 329.
59. Utsunomiya, S., Wang, L.M., Yudintsev, S., and Ewing, R.C.: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).
60. Utsunomiya, S., Yudintsev, S., Wang, L.M., and Ewing, R.C.: Ion-beam and electron beam irradiation of synthetic britholite. J. Nucl. Mater. 322, 180 (2003).
61. Lian, J., Wang, L.M., Ewing, R.C., Yudintsev, S.V., and Stefanovsky, S.V.: Ion beam-induced amorphization and order-disorder transitions in the murataite structure. J. Appl. Phys. 97, 113536 (2005).
62. Utsunomiya, S., Yudintsev, S., and Ewing, R.C.: Radiation effects in ferrite garnet. J. Nucl. Mater. 336, 251 (2005).
63. Whittle, K.R., Lumpkin, G.R., Blackford, M.G., Aughterson, R.D., Smith, K.L., and Zaluzec, N.J.: Ion-beam irradiation of lanthanum compounds in the system La2O3–Al2O3 and La2O3–TiO2 . J. Solid State Chem. 183, 2416 (2010).
64. Zhang, F.X., Lian, J., Becker, U., Ewing, R.C., Wang, L.M., Hu, J., and Saxena, S.K.: Structural change of layered perovskite La2Ti2O7 at high pressures. J. Solid State Chem. 180, 571 (2007).
65. Lian, J., Ewing, R.C., Wang, L.M., and Helean, K.B.: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19, 1575 (2004).
66. Ewing, R.C.: The nuclear fuel cycle versus the carbon cycle. Can. Mineral. 43, 2099 (2005).
67. Smith, K.L., Blackford, M.G., Lumpkin, G.R., Whitle, K., and Zaluzec, N.J.: Radiation tolerance of A2B2O7 compounds at the cubic—Monoclinic boundary. Microsc. Microanal. 12(2), 1094 (2006).
68. Lumpkin, G.R., Pruneda, M., Rios, S., Smith, K.L., Trachenko, K., Whittle, K.R., and Zaluzec, N.J.: Nature of chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds. J. Solid State Chem. 180, 1512 (2007).

Ion-beam irradiation and 244Cm-doping investigations of the radiation response of actinide-bearing crystalline waste forms

  • Sergey V. Yudintsev (a1), Andrey A. Lizin (a2), Tatiana S. Livshits (a3), Sergey V. Stefanovsky (a4), Sergey V. Tomilin (a5) and Rodney C. Ewing (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed