Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T17:46:37.571Z Has data issue: false hasContentIssue false

Ion-beam irradiation and 244Cm-doping investigations of the radiation response of actinide-bearing crystalline waste forms

Published online by Cambridge University Press:  16 February 2015

Sergey V. Yudintsev*
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Laboratory of Radiogeology and Radiogeoecology, Moscow 119017, Russia
Andrey A. Lizin
Affiliation:
Research Institute of Atomic Reactors, Radiochemical Department, Dimitrovgrad-10, Ulyanovsk reg., Moscow, Russia
Tatiana S. Livshits
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Laboratory of Radiogeology and Radiogeoecology, Moscow 119017, Russia
Sergey V. Stefanovsky
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Laboratory of Radioecological and Radiation Problems, 119071Russia
Sergey V. Tomilin
Affiliation:
Research Institute of Atomic Reactors, Radiochemical Department, Dimitrovgrad-10, Ulyanovsk reg., Moscow, Russia
Rodney C. Ewing
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
*
a)Address all correspondence to this author. e-mail: syud@igem.ru
Get access

Abstract

Candidate materials for actinide immobilization are subject to alpha-decay event doses that accumulate to values of more than 1020 alpha-decays per gram (tens displacements per atom, dpa) over the extended periods of geologic disposal. To evaluate the radiation-response of actinide-bearing materials, two experimental techniques have been used to accelerate the damage accumulation process: ion-beam irradiations and 244Cm-doping experiments. Based on modern characterization techniques, such as high-resolution transmission electron microscopy, and experimental results that involve ion-beam irradiation and chemical doping with highly active actinides, crystalline ceramics for the immobilization of actinides can be divided into three groups on the basis of their critical doses, Dc, i.e., the dose required for amorphization at 300 K: (i) low resistance to radiation damage accumulation (Dc ∼ 0.2 dpa) – murataite, Ti-perovskite, Fe-garnet; (ii) resistant (0.4 < Dc < 0.6 dpa) – Al-garnet, Ti–Zr-pyrochlore, Al-perovskite; and (iii) highly resistant (Dc > 0.8 dpa) – Zr-, Zr–Ti-, and Sn-pyrochlores. Phases with low critical temperatures (Tc below 600 K) will not become amorphous in a deep geologic repository, as long as the temperature remains between 300 and 550 K, but rather, they will remain crystalline. Only Zr-rich pyrochlore is fully resistant to radiation damage and will remain crystalline over the entire period of its disposal.

Type
Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Contributing Editor: William J. Weber

References

REFERENCES

Kopyrin, A.A., Karelin, A.I., and Karelin, V.A.: Technology of Production and Radiochemical Reprocessing of Nuclear Fuel (Russ. Atomenergoizdat, Moscow, Russia, 2006); 576 pp.Google Scholar
IAEA: Implications of Partitioning and Transmutation in Radioactive Waste Management (IAEA, Vienna, Austria, 2004); 140 pp.Google Scholar
CEA: Treatment and Recycling of Spent Nuclear Fuel (CEA, Paris, France, 2008); 175 pp.Google Scholar
NEA, OECD: Minor Actinide Burning in Thermal Reactors; Report No. 6997; NEA, OECD: Paris, France, 2013; 78 pp.Google Scholar
Eckerman, K., Harrison, J., Menzel, H-G., Clement, C.H.: ICRP Publication 119. Compendium of dose coefficients based on ICRP publication 60. Ann. ICRP 41(Suppl.), 39 (2012).Google Scholar
IAEA: Library of Recommended Actinide Decay Data 2011 (IAEA, Vienna, 2013); 442 pp.Google Scholar
NEA, OECD: Fuels and Materials for Transmutation; Report No. 5419; NEA, OECD: Paris, France, 2005; 240 pp.Google Scholar
von Hippel, F., Ewing, R., Garwin, R., and Macfarlane, A.: Time to bury plutonium. Nature 485, 167 (2012).Google Scholar
Radioactive Waste Forms for the Future, Lutze, W. and Ewing, R. ed.; Elsevier Sci. Publ.: Amsterdam, 1988; 778 pp.Google Scholar
Stefanovsky, S.V., Yudintsev, S.V., Gieré, R., and Lumpkin, G.R.: Nuclear waste forms. In Energy, Waste, and the Environment: A Geochemical Perspective, Gieré, R. and Stille, P. eds.; Geol. Society, Special Publications, 236, Geological Society: London, UK, 2004; p. 37.Google Scholar
Laverov, N.P., Velichkin, V.I., Omelyanenko, B.I., Yudintsev, S.V., Petrov, V.A., and Bychkov, A.V.: Isolation of Spent Nuclear Materials: Geological and Geochemical Basis (IPE RAS, Moscow, Russia, 2008); 280 pp.Google Scholar
Pierce, E.M., McGrail, B.P., Martin, P.F., Marra, J.C., Arey, B.W., and Geiszler, K.N.: Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions. Appl. Geochem. 22, 1841 (2007).Google Scholar
Novikov, A.P., Kalymkov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., and Myasoedov, B.F.: Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314, 638 (2006).Google Scholar
Laverov, N.P., Yudintsev, S.V., Livshitz, T.S., Stefanovsky, S.V., Lukinykh, A.N., and Ewing, R.C.: Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes. Geochem. Int. 48, 1 (2010).CrossRefGoogle Scholar
Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr.: Radiation effects in nuclear waste forms for high-level radioactive waste. Progr. Nucl. Energ. 29(2), 63 (1995).Google Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.H.K., Vance, E.R., and Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 1434 (1998).CrossRefGoogle Scholar
Ewing, R.C. and Weber, W.J.: Actinide waste forms and radiation effects. In The Chemistry of the Actinide and Transactinide Elements, Vol. 6, Morss, L.R., Edelstein, N.M., and Fuger, J. eds.; Springer: Dordrecht, The Netherlands, 2010; p. 3813.CrossRefGoogle Scholar
Weber, W.J. and Ewing, R.C.: Ceramic waste forms for uranium and transuranium elements. In Uranium: Cradle to Grave, Burns, P.C. and Sigmon, G.E. eds.; Mineralogical Association of Canada, Short Course Series, 43, 2013; p. 317.Google Scholar
Lumpkin, G.R. and Geisler-Wierwille, T.: Minerals and natural analogues. In Comprehensive Nuclear Materials, Vol. 5, Konings, R.J.M. ed.; Elsevier: Amsterdam, 2012; p. 563.Google Scholar
Weber, W.J., Wald, J.W., and Matzke, Hj.: Self-radiation damage in Gd2Ti2O7 . Mater. Lett. 3, 173 (1985).Google Scholar
Ewing, R.C., Weber, W.J., and Lian, J.: Nuclear waste disposal—Pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 (2004).Google Scholar
Karioris, F.G., Appaji Gowda, K., Cartz, L., and Labbe, J.C.: Damage cross-sections of heavy ions in crystal structures. J. Nucl. Mater. 108109, 748 (1982).CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, NewYork, 1985).Google Scholar
Ewing, R.C.: Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. U. S. A. 96, 3432 (1999).Google Scholar
Weber, W.J. and Ewing, R.C.: Plutonium immobilization and radiation effects. Science 289, 2051 (2000).CrossRefGoogle ScholarPubMed
Strachan, D.M., Scheele, R.D., Buck, E.C., Icenhower, J.P., Kozelisky, A.E., Sell, R.L., Elovich, R.J., and Buchmiller, W.C.: Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore. J. Nucl. Mater. 345, 109 (2005).Google Scholar
Strachan, D.M., Scheele, R.D., Buck, E.C., Kozelisky, A.E., Sell, R.L., Elovich, R.J., and Buchmiller, W.C.: Radiation damage effects in candidate titanates for Pu disposition: Zirconolite. J. Nucl. Mater. 372, 16 (2008).Google Scholar
Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., and Livshits, T.S.: Radiation and chemical resistance of synthetic ceramics based on ferritic garnet. Radiochemistry 50(4), 432 (2008).Google Scholar
Muller, I. and Weber, W.J.: Plutonium in crystalline ceramics and glasses. MRS Bull. 26(1), 698 (2001).CrossRefGoogle Scholar
Weber, W.J., Navrotsky, A., Stefanovsky, S., Vance, E.R., and Vernaz, E.: Material science of high-level waste immobilization. MRS Bull. 24, 46 (2009).Google Scholar
Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V.G.: Radiation stability of gadolinium zirconates: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999).Google Scholar
Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium. J. Mater. Res. 12, 1946 (1997).Google Scholar
Lian, J., Yudintsev, S.V., Stefanovsky, S.V., Wang, L.M., and Ewing, R.C.: Ion beam irradiation of U-, Th- and Ce-doped pyrochlores. J. Alloys Compd. 444445, 429 (2007).Google Scholar
Laverov, N.P., Yudintsev, S.V., Yudintseva, T.S., Stefanovsky, S.V., Ewing, R.C., Lian, J., Utsonomiya, S., and Wang, L.M.: Effect of radiation on properties of confinement matrices for immobilization of actinide-bearing wasters. Geol. Ore Deposits 45, 423 (2003).Google Scholar
Weber, W.J., Ewing, R.C., and Meldrum, A.: The kinetics of alpha-decay induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J. Nucl. Mater. 250, 147 (1997).Google Scholar
Mosley, W.C.: Self-radiation damage in curium-244 oxide and aluminate. J. Am. Ceram. Soc. 54, 475 (1971).Google Scholar
Rusin, J.M., Gray, W.J., and Wald, J.W.: Multibarrier Waste Forms—Part II. Characterization and Evaluation. Report No. PNL-2668-2 (Pacific Northwest Laboratory, Richland, WA, 1979).Google Scholar
Turcotte, R.P., Wald, J.M., Roberts, F.P., and Rusin, J.M.: Radiation damage in nuclear waste ceramics. J. Am. Ceram. Soc. 65, 589 (1982).Google Scholar
Wald, J.W. and Offermann, P.: A study of radiation effects in curium-doped Gd2Ti2O7 (pyrochlore) and CaZrTi2O7 (zirconolite). In Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982) p. 369.Google Scholar
Wald, J.W. and Weber, W.J.: Effects of self-radiation damage on the leachability of actinide-host phases. In Nuclear Waste Management. Volume 8 of Advances in Ceramics, Wicks, G.G. and Ross, W.A. eds.; The American Ceramic Society: Columbus, OH, 1984; p. 71.Google Scholar
Weber, W.J., Wald, J.W., and Matzke, Hj.: Self-radiation damage in actinide host phases of nuclear waste forms. In Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985) p. 679.Google Scholar
Weber, W.J., Wald, J.W., and Matzke, Hj.: Effects of self-irradiation damage in Cm-doped Gd2Ti2O7, and CaZrTi2O7 . J. Nucl. Mater. 138, 196 (1986).CrossRefGoogle Scholar
Weber, W.J. and Matzke, Hj.: Radiation effects in actinide host phases. Radiat. Eff. 98, 93 (1986).CrossRefGoogle Scholar
Mitamura, H., Matsumoto, S., Miyazaki, T., White, T.J., Nukaga, K., Togashi, Y., Sagawa, T., Tashiro, S., Levins, D.M., and Kikuchi, A.: Self-irradiation damage of a curium-doped titanate ceramic containing sodium-rich high level nuclear waste. J. Am. Ceram. Soc. 73, 3433 (1990).Google Scholar
Mitamura, H., Matsumoto, S., Hart, K.P., Miyazaki, T., Vance, E.R., Tamura, Y., Togashi, Y., and White, T.J.: Aging effect on curium-doped titanate ceramic containing sodium-rich high level nuclear waste. J. Am. Ceram. Soc. 75, 392 (1992).Google Scholar
Mitamura, H., Matsumoto, S., Stewart, M.W.A., Tsuboi, T., Hashimoto, M., Vance, E.R., Hart, K.P., Togashi, Y., Kanazawa, H., Ball, C.J., and White, T.J.: α-Decay damage effects in curium-doped titanate ceramic containing sodium-free high level nuclear waste. J. Am. Ceram. Soc. 77, 2255 (1994).CrossRefGoogle Scholar
Mitamura, H., Matsumoto, S., Tusboi, T., Vance, E.R., Begg, B.D., and Hart, K.P.: Alpha-decay damage in Cm-doped perovskite. In Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995) p. 1405.Google Scholar
Burakov, B.E.: Crystalline mineral-like matrices for immobilization of actinides. Dr. Sci. Thesis, St-Petersburgh State University, St-Petersburgh, Russia, 2013.Google Scholar
Matzke, Hj. and van Geel, J.: Incorporation of Pu and other actinides in borosilicate glass and in waste ceramics. In Disposal of Weapon Plutonium, Merz, E.R. and Walter, C.E. eds.; Kluwer Academic Publishers: The Netherlands, 1996; p. 93.Google Scholar
Yudintsev, S.V., Lukinykh, A.N., Tomilin, S.V., Lizin, A.A., and Stefanovsky, S.V.: Alpha-decay induced amorphization in Cm-doped Gd2TiZrO7 . J. Nucl. Mater. 385, 200 (2009).Google Scholar
Zhang, J., Livshits, T.S., Lizin, A.A., Hu, Q., and Ewing, R.C.: Irradiation of synthetic garnet by heavy ions and a-decay of 244Cm. J. Nucl. Mater. 407, 137 (2010).CrossRefGoogle Scholar
Livshits, T.S., Lizin, A.A., Zhang, J., and Ewing, R.C.: Amorphization of rare earth aluminate garnets at ion irradiation and decay of 244Cm admixture. Geol. Ore Deposits 52(4), 267 (2010).Google Scholar
Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., Omelyanenko, B.I., and Nikonov, B.S.: Murataite matrices for actinide wastes. Radiochemistry 53, 229 (2011).Google Scholar
Icenhower, J.P., Strachan, D.M., McGrail, B.P., Sheele, R.D., Rodrigues, E.A., Steele, J.L., and Legore, V.L.: Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium. Am. Mineral. 91, 39 (2006).Google Scholar
Stefanovsky, S.V., Yudintsev, S.V., and Myasoedov, B.F.: Radiation effects in americium-doped zirconate ceramics. Dokl. Chem. 447, 296 (2012).Google Scholar
Burakov, B.E., Anderson, E.B., Zamoryanskaya, M.V., Yagovkina, M.A., and Nikolaeva, E.V.: Synthesis and characterization of cubic zirconia, (Zr,Gd,Pu)O2, doped with 238Pu. In Scientific Basis for Nuclear Waste Management XXV, edited by McGrail, B.P. and Cragnolino, G.A. (Mater. Res. Soc. Symp. Proc. 713, Pittsburgh, PA, 2002) p. 333.Google Scholar
Sykora, R.E., Raison, P.E., and Haire, R.G.: Self-irradiation induced structural changes in the transplutonium pyrochlores An2Zr2O7 (An = Am, Cf). J. Solid State Chem. 178, 578 (2005).Google Scholar
Lumpkin, G.R., Smith, K.L., and Blake, R.G.: TEM study of radiation damage and annealing of neutron irradiated zirconolite. In Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996) p. 329.Google Scholar
Utsunomiya, S., Wang, L.M., Yudintsev, S., and Ewing, R.C.: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).Google Scholar
Utsunomiya, S., Yudintsev, S., Wang, L.M., and Ewing, R.C.: Ion-beam and electron beam irradiation of synthetic britholite. J. Nucl. Mater. 322, 180 (2003).Google Scholar
Lian, J., Wang, L.M., Ewing, R.C., Yudintsev, S.V., and Stefanovsky, S.V.: Ion beam-induced amorphization and order-disorder transitions in the murataite structure. J. Appl. Phys. 97, 113536 (2005).Google Scholar
Utsunomiya, S., Yudintsev, S., and Ewing, R.C.: Radiation effects in ferrite garnet. J. Nucl. Mater. 336, 251 (2005).Google Scholar
Whittle, K.R., Lumpkin, G.R., Blackford, M.G., Aughterson, R.D., Smith, K.L., and Zaluzec, N.J.: Ion-beam irradiation of lanthanum compounds in the system La2O3–Al2O3 and La2O3–TiO2 . J. Solid State Chem. 183, 2416 (2010).CrossRefGoogle Scholar
Zhang, F.X., Lian, J., Becker, U., Ewing, R.C., Wang, L.M., Hu, J., and Saxena, S.K.: Structural change of layered perovskite La2Ti2O7 at high pressures. J. Solid State Chem. 180, 571 (2007).Google Scholar
Lian, J., Ewing, R.C., Wang, L.M., and Helean, K.B.: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19, 1575 (2004).Google Scholar
Ewing, R.C.: The nuclear fuel cycle versus the carbon cycle. Can. Mineral. 43, 2099 (2005).CrossRefGoogle Scholar
Smith, K.L., Blackford, M.G., Lumpkin, G.R., Whitle, K., and Zaluzec, N.J.: Radiation tolerance of A2B2O7 compounds at the cubic—Monoclinic boundary. Microsc. Microanal. 12(2), 1094 (2006).Google Scholar
Lumpkin, G.R., Pruneda, M., Rios, S., Smith, K.L., Trachenko, K., Whittle, K.R., and Zaluzec, N.J.: Nature of chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds. J. Solid State Chem. 180, 1512 (2007).Google Scholar