Skip to main content Accessibility help
×
Home

Ion tracks in amorphous silica

  • Abdenacer Benyagoub (a1) and Marcel Toulemonde (a1)

Abstract

Investigations of the structural modifications induced in amorphous silica by ion irradiations in a wide energy range from ∼1 MeV to ∼1 GeV are reviewed. Several characterization methods such as infrared spectroscopy, chemical etching, dimensional measurements, and small-angle x-ray scattering have been used to measure the damage induced by individual ions and to analyze its evolution as a function of the energy released by the irradiating species. The comparison of the obtained results shows that high-energy ions lead to the formation along the ion trajectories of damaged zones (called ion tracks) above an electronic energy loss threshold depending on the ion specific energy. This threshold can be as low as ∼1.4 keV/nm for ion beams of 0.2 MeV/u and increases to ∼2.4 keV/nm at ∼5 MeV/u, in agreement with the velocity effect which predicts a narrower radial distribution of the deposited electronic energy with low-velocity ions than with high-velocity ions. Above these threshold values, track radii increase approximately with the square root of the electronic energy loss. In addition, for Au beams between 0.3 and 27 MeV, the generated damage exhibits a U-shaped dependence on the incident ion energy, suggesting a combined effect of the nuclear and electronic energy loss in this energy range. A unified thermal spike model taking into account the contributions of both energy losses allows to reproduce the whole experimental data.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: benyagoub@ganil.fr

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Contributing Editor: William J. Weber

Footnotes

References

Hide All
1. Klaumünzer, S. and Schumacher, G.: Dramatic growth of glassy Pd80Si20 during heavy-ion irradiation. Phys. Rev. Lett. 51, 1987 (1983).
2. Klaumünzer, S., Hou, M.D., and Schumacher, G.: Coulomb explosions in a metallic-glass due to the passage of fast heavy-ions. Phys. Rev. Lett. 57, 850 (1986).
3. Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D., and Thomé, L.: Radiation-damage induced by electronic-energy loss in amorphous metallic alloys. Europhys. Lett. 5, 241 (1988).
4. Benyagoub, A. and Klaumünzer, S.: Swift heavy ion induced plastic deformation. Radiat. Eff. Defects Solids 126, 105 (1993).
5. Iwase, A., Sasaki, S., and Iwata, T.: Anomalous reduction of stage-I recovery in nickel irradiated with heavy ions in the energy range 100–120 MeV. Phys. Rev. Lett. 58, 2450 (1987).
6. Dunlop, A., Lesueur, D., Morillo, J., Dural, J., Spohr, R., and Vetter, J.: A new damage mechanism in a crystalline metallic target irradiated with heavy gigaelectronvolts ions. C. R. Acad. Sci. Paris, Ser. II 309, 1277 (1989).
7. Audouard, A., Balanzat, E., Bouffard, S., Jousset, J.C., Chamberod, A., Dunlop, A., Lesueur, D., Fuchs, G., Spohr, R., Vetter, J., and Thomé, L.: Evidence for amorphization of a metallic alloy by ion electronic-energy loss. Phys. Rev. Lett. 65, 875 (1990).
8. Barbu, A., Dunlop, A., Lesueur, D., and Averback, R.S.: Latent tracks do exist in metallic materials. Europhys. Lett. 15, 37 (1991).
9. Klaumünzer, S., Schumacher, G., Rentzsch, S., Vogl, G., Söldner, L., and Nieger, H.: Severe radiation damage by heavy ions in glassy Pd80Si20 . Acta Metall. 30, 1493 (1982).
10. Audouard, A., Balanzat, E., Fuchs, G., Jousset, J.C., Lesueur, D., and Thomé, L.: High-energy heavy-ion irradiations of Fe85B15 amorphous alloy: Evidence for electronic energy loss effect. Europhys. Lett. 3, 327 (1987).
11. Benyagoub, A., Levesque, F., Couvreur, F., Gibert-Mougel, C., Dufour, C., and Paumier, E.: Evidence of a phase transition induced in zirconia by high energy heavy ions. Appl. Phys. Lett. 77, 3197 (2000).
12. Benyagoub, A.: Evidence of an ion-beam induced crystal line-to-crystal line phase transformation in hafnia. Eur. Phys. J. B 34, 395 (2003).
13. Benyagoub, A.: Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72, 094114 (2005).
14. Benyagoub, A., Audren, A., Thomé, L., and Garrido, F.: Athermal crystallization induced by electronic excitations in ion-irradiated silicon carbide. Appl. Phys. Lett. 89, 241914 (2006).
15. Benyagoub, A.: Irradiation effects induced in silicon carbide by low and high energy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2766 (2008).
16. Benyagoub, A. and Audren, A.: Mechanism of the swift heavy ion induced epitaxial recrystallization in predamaged silicon carbide. J. Appl. Phys. 106, 083516 (2009).
17. Young, D.A.: Etching of radiation damage in lithium fluoride. Nature 182, 375 (1958).
18. Silk, E.C.H. and Barnes, R.S.: Examination of fission fragment tracks with an electron microscope. Philos. Mag. 4, 970 (1959).
19. Studer, F., Hervieu, M., Costantini, J-M., and Toulemonde, M.: High resolution electron microscopy of tracks in solids. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 449 (1997).
20. Dartyge, E.: Défauts d'irradiation liés à l'implantation dans le mica muscovite. J. Phys. Colloques 34(C5), C583 (1973).
21. Albrecht, D., Armbruster, P., Spohr, R., Roth, M., Schaupert, K., and Stuhrmann, H.: Investigation of heavy ion produced defect structures in insulators by small angle scattering. Appl. Phys. A 37, 37 (1985).
22. Albrecht, D., Balanzat, E., and Schaupert, K.: X-ray small-angle scattering investigation of high-energy Ar-tracks in mica. Nucl. Tracks Radiat. Meas. 11, 93 (1986).
23. Dunlop, A. and Lesueur, D.: Damage creation via electronic excitations in metallic targets part I: Experimental results. Radiat. Eff. Defects Solids 126, 123 (1993).
24. Vetter, J., Scholz, R., and Angert, N.: Investigation of latent tracks from heavy ions in GeS crystals by high resolution TEM. Nucl. Instrum. Methods Phys. Res., Sect. B 91, 129 (1994).
25. Herre, O., Wesch, W., Wendler, E., Gaiduk, P.I., Komarov, F.F., Klaumünzer, S., and Meier, P.: Formation of discontinuous tracks in single-crystalline InP by 250-MeV Xe-ion irradiation. Phys. Rev. B 58, 4832 (1998).
26. Szenes, G., Horváth, Z.E., Pécz, B., Pászti, F., and Tóth, L.: Tracks induced by swift heavy ions in semiconductors. Phys. Rev. B 65, 045206 (2002).
27. Canut, B., Bonardi, N., Ramos, S.M.M., and Della-Negra, S.: Latent tracks formation in silicon single crystals irradiated with fullerenes in the electronic regime. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 296 (1998).
28. Dunlop, A., Jaskierowicz, G., and Della-Negra, S.: Latent track formation in silicon irradiated by 30 MeV fullerenes. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 302 (1998).
29. Colder, A., Marty, O., Canut, B., Levalois, M., Marie, P., Portier, X., Ramos, S.M.M., and Toulemonde, M.: Latent track formation in germanium irradiated with 20, 30 and 40 MeV fullerenes in the electronic regime. Nucl. Instrum. Methods Phys. Res., Sect. B 174, 491 (2001).
30. Benyagoub, A., Löffler, S., Rammensee, R., and Klaumünzer, S.: Ion-beam-induced plastic-deformation in vitreous silica. Radiat. Eff. Defects Solids 110, 217 (1989).
31. Benyagoub, A., Löffler, S., Rammensee, R., Klaumünzer, S., and Saemann-Ischenko, G.: Plastic-deformation in SiO2 induced by heavy-ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 228 (1992).
32. Furuno, S., Otsu, H., Hojou, K., and Izui, K.: Tracks of high energy heavy ions in solids. Nucl. Instrum. Methods Phys. Res., Sect. B 107, 223 (1996).
33. Hedler, A., Klaumünzer, S., and Wesch, W.: Amorphous silicon exhibits a glass transition. Nat. Mater. 3, 804 (2004).
34. Bierschenk, T., Giulian, R., Afra, B., Rodriguez, M.D., Schauries, D., Mudie, S., Pakarinen, O.H., Djurabekova, F., Nordlund, K., Osmani, O., Medvedev, N., Rethfeld, B., Ridgway, M.C., and Kluth, P.: Latent ion tracks in amorphous silicon. Phys. Rev. B 88, 174111 (2013).
35. Wesch, W., Schnohr, C.S., Kluth, P., Hussain, Z.S., Araujo, L.L., Giulian, R., Sprouster, D.J., Byrne, A.P., and Ridgway, M.C.: Structural modification of swift heavy ion irradiated amorphous Ge layers. J. Phys. D: Appl. Phys. 42, 115402 (2009).
36. Steinbach, T., Schnohr, C.S., Kluth, P., Giulian, R., Araujo, L.L., Sprouster, D.J., Ridgway, M.C., and Wesch, W.: Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers. Phys. Rev. B 83, 054113 (2011).
37. Ridgway, M.C., Bierschenk, T., Giulian, R., Afra, B., Rodriguez, M.D., Araujo, L.L., Byrne, A.P., Kirby, N., Pakarinen, O.H., Djurabekova, F., Nordlund, K., Schleberger, M., Osmani, O., Medvedev, N., Rethfeld, B., and Kluth, P.: Tracks and voids in amorphous Ge induced by swift heavy-ion irradiation. Phys. Rev. Lett. 110, 245502 (2013).
38. Mohanty, T., Satyam, P.V., Mishra, N.C., and Kanjilal, D.: Latent track creation in fused silica by 200 MeV silver beam. Radiat. Meas. 36, 137 (2003).
39. Meftah, A., Brisard, F., Costantini, J.M., Dooryhée, E., Hage-Ali, M., Hervieu, M., Stoquert, J.P., Studer, F., and Toulemonde, M.: Track formation in SiO2 quartz and the thermal-spike mechanism. Phys. Rev. B 49, 12457 (1994).
40. Busch, M.C., Slaoui, A., Siffert, P., Dooryhee, E., and Toulemonde, M.: Structural and electrical damage induced by high-energy heavy-ions in SiO2/Si structures. J. Appl. Phys. 71, 2596 (1992).
41. Garrido, B., Samitier, J., Bota, S., Dominguez, C., Montserrat, J., and Morante, J.R.: Structural damage and defects created in SiO2-films by Ar ion-implantation. J. Non-Cryst. Solids 187, 101 (1995).
42. Toulemonde, M., Weber, W.J., Li, G., Shutthanandan, V., Kluth, P., Yang, T., Wang, Y., and Zhang, Y.: Synergy of nuclear and electronic energy losses in ion-irradiation processes: The case of vitreous silicon dioxide. Phys. Rev. B 83, 054106 (2011).
43. Kluth, P., Schnohr, C.S., Pakarinen, O.H., Djurabekova, F., Sprouster, D.J., Giulian, R., Ridgway, M.C., Byrne, A.P., Trautmann, C., Cookson, D.J., Nordlund, K., and Toulemonde, M.: Fine structure in swift heavy ion tracks in amorphous SiO2 . Phys. Rev. Lett. 101, 175503 (2008).
44. Jensen, J., Razpet, A., Skupinski, M., and Possnert, G.: Ion tracks in amorphous SiO2 irradiated with low and high energy heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 245, 269 (2006).
45. Dallanora, A., Marcondes, T.L., Bermudez, G.G., Fichtner, P.F.P., Trautmann, C., Toulemonde, M., and Papaléo, R.M.: Nanoporous SiO2/Si thin layers produced by ion track etching: Dependence on the ion energy and criterion for etchability. J. Appl. Phys. 104, 024307 (2008).
46. Fleischer, R.L., Price, P.B., and Walker, R.M.: Nuclear Tracks in Solids: Principles and Applications (University of California Press, Berkeley, 1975).
47. Spohr, R.: Ion Tracks and Microtechnology: Principles and Applications (Vieweg, Braunschweig, 1990).
48. Klaumünzer, S.: Ion tracks in quartz and vitreous silica. Nucl. Instrum. Methods Phys. Res., Sect. B 225, 136 (2004).
49. Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat.-Fys. Medd. 52, 263 (2006).
50. Klaumünzer, S.: Thermal-spike models for ion track physics: A critical examination. Mat.-Fys. Medd. 52, 293 (2006).
51. Trautmann, C.: Micro- and nanoengineering with ion tracks. In Ion Beams in Nanoscience and Technology, Hellborg, R., Whitlow, H.J., and Zhang, Y. eds.; Springer-Verlag: Berlin, Heidelberg, 369387 2009.
52. Primak, W.: The Compacted States of Vitreous Silica (Gordon and Breach Science Publishers, New York, 1975).
53. Klaumünzer, S. and Benyagoub, A.: Phenomenology of the plastic-flow of amorphous solids induced by heavy-ion bombardment. Phys. Rev. B 43, 7502 (1991).
54. Audouard, A., Dural, J., Toulemonde, M., Lovas, A., Szenes, G., and Thomé, L.: Growth phenomenon in amorphous solids irradiated with GeV heavy ions: Electronic-energy-loss dependence of the initial growth rate. Phys. Rev. B 54, 15690 (1996).
55. Audouard, A., Toulemonde, M., Szenes, G., and Thomé, L.: Something new about the giant deformation of amorphous alloys irradiated with GeV ions. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 233 (1998).
56. Benyagoub, A., Klaumünzer, S., and Toulemonde, M.: Radiation-induced compaction and plastic flow of vitreous silica. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 449 (1998).
57. Trinkaus, H. and Ryazanov, A.I.: Viscoelastic model for the plastic-flow of amorphous solids under energetic ion-bombardment. Phys. Rev. Lett. 74, 5072 (1995).
58. Vollmayr, K., Kob, W., and Binder, K.: Cooling-rate effects in amorphous silica: A computer-simulation study. Phys. Rev. B 54, 15808 (1996).
59. van Dillen, T., Snoeks, E., Fukarek, W., van Kats, C.M., Velikov, K.P., van Blaaderen, A., and Polman, A.: Anisotropic deformation of colloidal particles under MeV ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 175, 350 (2001).
60. Rotaru, C., Pawlak, F., Khalfaoui, N., Dufour, C., Perrière, J., Laurent, A., Stoquert, J.P., Lebius, H., and Toulemonde, M.: Track formation in two amorphous insulators, vitreous silica and diamond like carbon: Experimental observations and description by the inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res., Sect. B 272, 9 (2012).
61. Awazu, K., Ishii, S., Shima, K., Roorda, S., and Brebner, J.L.: Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2 . Phys. Rev. B 62, 3689 (2000).
62. Dartyge, E.: Annealing of latent tracks of heavy-ions in mica muscovite. J. Phys. 39, 1287 (1978).
63. Schwartz, K., Trautmann, C., Steckenreiter, T., Geiß, O., and Krämer, M.: Damage and track morphology in LiF crystals irradiated with GeV ions. Phys. Rev. B 58, 11232 (1998).
64. Kluth, P., Schnohr, C.S., Sprouster, D.J., Byrne, A.P., Cookson, D.J., and Ridgway, M.C.: Measurement of latent tracks in amorphous SiO2 using small angle X-ray scattering. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2994 (2008).
65. Guinier, A. and Fournet, G.: Small-Angle Scattering of X-rays (John Wiley, New York, 1955).
66. Fleischer, R.L. and Price, P.B.: Charged particle tracks in glass. J. Appl. Phys. 34, 2903 (1963).
67. Sigrist, A. and Balzer, R.: Formation of track in crystals. Helv. Phys. Acta 50, 49 (1977).
68. Rotaru, C.: PhD Dissertation, University of Caen, France, 2004. http://tel.archives-ouvertes.fr/docs/00/04/65/00/PDF/tel-00005399.pdf.
69. Canut, B., Blanchin, M.G., Ramos-Canut, S., Teodorescu, V., and Toulemonde, M.: Incorporation of sol-gel SnO2:Sb into nanoporous SiO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 245, 327 (2006).
70. Bergamini, F., Bianconi, M., Cristiani, S., Gallerani, L., Nubile, A., Petrini, S., and Sugliani, S.: Ion track formation in low temperature silicon dioxide. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2475 (2008).
71. Saint Martin, G., Bernaola, O.A., García Bermúdez, G., and Behar, M.: Evolution of ion track profiles in amorphous SiO2 . Radiat. Meas. 42, 130 (2007).
72. Dartyge, E., Duraud, J.P., Langevin, Y., and Maurette, M.: New model of nuclear-particle tracks in dielectric minerals. Phys. Rev. B 23, 5213 (1981).
73. Houpert, Ch., Studer, F., Groult, D., and Toulemonde, M.: Transition from localized defects to continuous latent tracks in magnetic insulators irradiated by high-energy heavy-ions: A HREM investigation. Nucl. Instrum. Methods Phys. Res., Sect. B 39, 720 (1989).
74. Devine, R.A.B.: Macroscopic and microscopic effects of radiation in amorphous SiO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 91, 378 (1994).
75. Dufour, Ch., Audouard, A., Beuneu, F., Dural, J., Girard, J. P., Hairie, A., Levalois, M., Paumier, E., and Toulemonde, M.: A high-resistivity phase induced by swift heavy-ion irradiation of Bi: A probe for thermal spike damage?. J. Phys.: Condens. Matter 5, 4573 (1993).
76. Toulemonde, M., Dufour, Ch., Meftah, A., and Paumier, E.: Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 903 (2000).
77. Waligorski, M.P.R., Hamm, R.N., and Katz, R.: The radial-distribution of dose around the path of a heavy-ion in liquid water. Nucl. Track Rad. Meas. 11, 309 (1986).
78. Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., and Trautmann, C.: Nanometric transformation of the matter by short and intense electronic excitation: Experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 28 (2012).
79. Toulemonde, M., Costantini, J.M., Dufour, Ch., Meftah, A., Paumier, E., and Studer, F.: Track creation in SiO2 and BaFe12O19 by swift heavy ions: A thermal spike description. Nucl. Instrum. Methods Phys. Res., Sect. B 116, 37 (1996).
80. Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, NY, 1985).
81. Sigmund, P. and Claussen, C.: Sputtering from elastic-collision spikes in heavy-ion-bombarded metals. J. Appl. Phys. 52, 990 (1981).
82. Sigmund, P.: Reciprocity in the electronic stopping of slow ions in matter. Eur. Phys. J. D 47, 45 (2008).
83. Jin, K., Zhang, Y., Zhu, Z., Grove, D.A., Xue, H., Xue, J., and Weber, W.J.: Electronic stopping powers for heavy ions in SiC and SiO2 . J. Appl. Phys. 115, 044903 (2014).
84. Ramos, S.M., Charlaix, E., Benyagoub, A., and Toulemonde, M.: Wetting on nanorough surfaces. Phys Rev. E 67, 031604 (2003).
85. Ramos, S.M., Benyagoub, A., Canut, B., and Jamois, C.: Superoleophobic behavior induced by nanofeatures on oleophilic surfaces. Langmuir 26(7), 5141 (2010).
86. Milanez Silva, C., Varisco, P., Moehlecke, A., Fichtner, P.P., Papaléo, R.M., and Eriksson, J.: Processing of nano-holes and pores on SiO2 thin films by MeV heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 486 (2003).
87. Velikov, K.P., van Dillen, T., Polman, A., and van Blaaderen, A.: Photonic crystals of shape-anisotropic colloidal particles. Appl. Phys. Lett. 81, 838 (2002).
88. D’Orléans, C., Stoquert, J.P., Estournès, C., Cerruti, C., Grob, J.J., Guille, J.L., Haas, F., Muller, D., and Richard-Plouet, M.: Anisotropy of Co nanoparticles induced by swift heavy ions. Phys. Rev. B 67, 220101(R) (2003).
89. Rizza, G.: Oral communication entitled “Plasmonic properties of ion-shaped nanoparticles”. Presented at the 19th International Conference on Ion Beam Modification of Materials (IBMM 2014), Leuven, (2014).

Related content

Powered by UNSILO

Ion tracks in amorphous silica

  • Abdenacer Benyagoub (a1) and Marcel Toulemonde (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.