Skip to main content Accessibility help
×
Home

Ion beam energy dependence of surface and structural properties of amorphous carbon films deposited by IBSD method on Ni–Cu alloy

  • Elham Mohagheghpour (a1), Marjan Rajabi (a1), Reza Gholamipour (a1), Majid M. Larijani (a2) and Shahab Sheibani (a2)...

Abstract

The amorphous carbon thin films were deposited by the ion beam sputtering deposition technique on Ni–Cu alloy substrates. The effect of sputtering ion beam energy on wettabillity, surface, and structural properties of thin films was examined. The sputtering ion beam energy was varied over a wide range from 2 to 5 keV. Raman spectra showed that the values of I D/I G ratio and the ‘G’ peak position have a reduction trend by increasing the argon ion beam energy while the surface roughness increased due to the resputtering effect. The wettability and surface energy of a-C carbon films were studied by contact angle measurements in relation to structure and topography. The deposited films showed a relatively high water contact angle (CA) that decreases from 87° to 75°. The X-ray photoelectron spectroscopy showed that the value of sp 3/sp 2 bond content of a-C thin films deposited with the highest argon ion beam energy of 5 keV was about 0.8. Furthermore, the optical band gap followed similar trends of the structural properties.

Copyright

Corresponding author

a) Address all correspondence to these authors. e-mail: mrajabi@irost.ir

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Lilly, M.B., Brezovich, I.A., and Atkinson, W.J.: Hyperthermia induction with thermally self-regulated ferromagnetic implants. Radiology 154, 243 (1985).
2. Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129281 (2002).
3. Robertson, J.: Comparison of diamond-like carbon to diamond for applications. Phys. Status Solidi A 205, 2233 (2008).
4. Aisenberg, S. and Chabot, R.: Ion-beam deposition of thin films of diamond like carbon. J. Appl. Phys. 42, 29532958 (1971).
5. Tang, Y., Li, Y.S., Yang, Q., and Hirose, A.: Characterization of hydrogenated amorphous carbon thin films by end-Hall ion beam deposition. Appl. Surf. Sci. 257, 46994705 (2011).
6. Bai, L., Zhang, G., Wu, Z., Wang, J., and Yan, P.: Effect of different ion beam energy on properties of amorphous carbon film fabricated by ion beam sputtering deposition (IBSD). Nucl. Instrum. Methods Phys. Res., Sect. B 269, 18711877 (2011).
7. Sodhi, R.N.S.: Application of surface analytical and modification techniques to biomaterial research. J. Electron. Spectrosc. 81, 269 (1996).
8. Yari, M., Larijani, M.M., Afshar, A., Eshghabadi, M., Shokouhy, A.: Physical properties of sputtered amorphous carbon coating. J. Alloys Compd. 513, 135138 (2012).
9. Waseem, B., Alam, S., Irfan, M., Shahid, M., Soomro, B.D., Hashim, S., and Iqbal, R.: Optimization and characterization of adhesion properties of DLC coatings on different substrates. Mater. Sci. Eng. 60, 012054 (2014).
10. Larijani, M.M., Yari, M., Afshar, A., Jafarian, M., and Eshghabadi, M.: A comparison of carbon coated and uncoated 316L stainless steel for using as bipolar plates in PEMFCs. J. Alloys Compd. 509, 74007404 (2011).
11. Ahmad, I., Roy, S.S., Rahman, Md.A., Okpalugo, T.I.T., Maguire, P.D., and McLaughlin, J.A.: Substrate effects on the microstructure of hydrogenated amorphous carbon films. Curr. Appl. Phys. 9, 937942 (2009).
12. Khan, N.: Dosimetric calculation of a thermo brachytherapy seed: A Monte Carlo study. In Partial fulfillment of the requirements for the degree of Master of Science in Biomedical Sciences, 2008.
13. Gautam, B., Parsai, E.I., Shvydka, D., and Feldmeier, J.: Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors. Med. Phys. 39, 19801990 (2012).
14. Parsai, E.I., Gautam, B., and Shvydka, D.: Evaluation of a novel thermobrachytherapy seed for concurrent administration of brachytherapy and magnetically mediated hyperthermia in treatment of solid tumors. J. Biomed. Phys. Eng. 1, 516 (2011).
15. Meigooni, A.S., Yoe-Sein, M.M., Al-Otoom, A.Y., and Sowards, K.T.: Determination of the dosimetric characteristics of InterSource125 Iodine brachytherapy source. Appl. Radiat. Isot. 56, 589599 (2002).
16. Donnet, C. and Erdemir, A. eds.: Tribology of Diamond-Like Carbon Films: Fundamentals and Applications (Springer, Berlin, 2008); pp. 102136.
17. Manova, D., Gerlach, J.W., and Mändl, S.: Thin film deposition using energetic ions. Materials 3, 41094141 (2010).
18. Pauleau, Y.: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61, 175181 (2001).
19. Bai, L., Zhang, G., Wu, Z., Wang, J., and Yan, P.: Effect of different ion beam energy on properties of amorphous carbon film fabricated by ion beam sputtering deposition (IBSD). Nucl. Instrum. Methods Phys. Res., Sect. B 269, 18711877 (2011).
20. Chiang, K.T., Yang, L., Wei, R., and Coulter, K.: Development of DLC-coated electrodes for corrosion sensor applications at high temperatures. Thin Solid Films 517, 11201124 (2008).
21. Ensinger, W.: Low energy ion assist during deposition-an effective tool for controlling thin film microstructure. Nucl. Instrum. Methods Phys. Res., Sect. B 127–128, 796 (1997).
22. Banerjee, D., Mukherjee, S., and Chattopadhyay, K.K.: Controlling the surface topology and hence the hydrophobicity of amorphous carbon thin films. Carbon 48, 10251031 (2010).
23. Mohagheghpour, E., Rajabi, M., Gholamipour, R., Larijani, M.M., and Sheibani, S.: Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique. Appl. Surf. Sci. 360, 5258 (2016).
24. Paulmier, T., Bell, J.M., and Fredericks, P.M.: Deposition of nano-crystalline graphite films by cathodic plasma electrolysis. Thin Solid Films 515, 29262934 (2007).
25. Pauleau, Y.: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61, 175181 (2001).
26. Merel, P., Tabbal, M., Chaker, M., Moisa, S., and Margot, J.: Direct evaluation of the sp 3 content in dmond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105110 (1998).
27. Vogler, E.A.: Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 74, 69117 (1998).
28. Peng, X. and Chen, A.: Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. J. Mater. Chem. 14, 25422548 (2004).
29. Zhou, Y., Wang, B., Song, X., Li, E., Li, G., Zhao, S., and Yan, H.: Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Appl. Surf. Sci. 253, 26902694 (2006).
30. Ferrari, A.C.: Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond Relat. Mater. 11, 10531061 (2002).
31. Ruso, M., Soga, T., Jimbo, T., Umen, M., and Sharon, M.: Structural and electrical properties of diamond-like carbon thin films prepared in inert gas condition. Surf. Rev. lett. 12, 691 (2005).
32. Shin, J.K., Lee, C.S., Lee, K.R., and Eun, K.Y.: Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphouscarbon films. Appl. Phys. Lett. 78, 631 (2001).
33. Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 61, 1409514107 (2000).
34. Adamopoulos, G., Robertson, J., Morrison, N.A., and Godet, C.: Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy. J. Appl. Phys. 96, 6348 (2004).
35. Vasin, A.V., Matveeva, L.A., and Kutsa, A.M.: Analysis of the fundamental absorption edge in amorphous hydrogenated carbon films. Tech. Phys. Lett. 25, 1006 (1999).
36. Piazza, F. and Morell, G.: Wettability of hydrogenated tetrahedral amorphous carbon. Diamond Relat. Mater. 18, 4350 (2009).
37. Ostrovskaya, L.Y.: Studies of diamond and diamond-like film surfaces using XAES, AFM and wetting. Vacuum 68, 219238 (2002).
38. Yan, X.B., Xu, T., Yue, S., Liu, H., Xue, Q., and Yang, S.: Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor. Diamond Relat. Mater. 14, 13421347 (2005).
39. ModabberAsl, A., Kameli, P., Ranjbar, M., Salamati, H., and Jannesari, M.: Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films. Superlattices Microstruct. 81, 6479 (2015).
40. Kaban, I., Nowak, R., Bruzda, G., Xi, L., Sobczak, N., Eckert, J., and Giebeler, L.: Wettability and work of adhesion of liquid sulfur on carbon materials for electrical energy storage applications. Carbon 98, 702707 (2016).

Keywords

Related content

Powered by UNSILO

Ion beam energy dependence of surface and structural properties of amorphous carbon films deposited by IBSD method on Ni–Cu alloy

  • Elham Mohagheghpour (a1), Marjan Rajabi (a1), Reza Gholamipour (a1), Majid M. Larijani (a2) and Shahab Sheibani (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.