Skip to main content Accessibility help

Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications

  • M. Khafizov (a1), V. Chauhan (a1), Y. Wang (a1), F. Riyad (a1), N. Hang (a1) and D.H. Hurley (a2)...


Thermal transport in materials used for energy applications is a physical process directly tied to performance and reliability. As a result, a great deal of effort has been devoted to understanding thermal transport in materials whose ability to conduct heat is critical. Here, our objective is to discuss the utility of laser-based thermoreflectance (TR) approaches that provide microscale measurement of thermal transport. We provide several examples that implement the TR technique to investigate thermal transport in materials used in nuclear energy applications. First, we discuss utility of this technique to measure thermal conductivity in ion irradiated ceramic materials during investigations where the primary objective is to understand the impact of radiation induced crystalline structure defects on thermal transport. We also present the capability of TR approach to resolve thermal conductivity of each layer in tristructural isotropic fuel, silicon carbide fiber composites, and 2nd phase precipitates in uranium silicide. Finally, the ability to measure interface thermal resistance between adjacent layers in composites is demonstrated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Olander, D.R.: Fundamental Aspects of Nuclear Reactor Fuel Elements: Prepared for the Division of Reactor Development and Demonstration, Energy Research and Development Administration (Technical Information Center, Office of Public Affairs, Springfield, VA, 1976).
2. Bergman, T.L. and Incropera, F.P.: Fundamentals of Heat and Mass Transfer, 7th ed. (Wiley, Hoboken, 2011).
3. Lamarsh, J.R. and Baratta, A.J.: Introduction to Nuclear Engineering, 3rd ed. (Prentice Hall, Upper Saddle River, 2001).
4. Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007).
5. Ronchi, C., Sheindlin, M., Staicu, D., and Kinoshita, M.: Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt(−1). J. Nucl. Mater. 327(1), 58 (2004).
6. Lassmann, K.: TRANSURANUS—A fuel-rod analysis code ready for use. J. Nucl. Mater. 188, 295 (1992).
7. Geelhood, K., Luscher, W.G., and Beyer, C.E.: FRAPCON-3.4: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup (NRC, Washington, DC, 2011).
8. Williamson, R.L., Hales, J.D., Novascone, S.R., Tonks, M.R., Gaston, D.R., Permann, C.J., Andrs, D., and Martineau, R.C.: Multidimensional multiphysics simulation of nuclear fuel behavior. J. Nucl. Mater. 423(1–3), 149 (2012).
9. Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).
10. Jensen, C., Xing, C., Folsom, C., Ban, H., and Phillips, J.: Design and validation of a high-temperature comparative thermal-conductivity measurement system. Int. J. Thermophys. 33(2), 311 (2012).
11. Cezairliyan, A., Baba, T., and Taylor, R.: A high-temperature laser-pulse thermal diffusivity apparatus. Int. J. Thermophys. 15(2), 317 (1994).
12. Snead, L.L., Zinkle, S.J., and White, D.P.: Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation. J. Nucl. Mater. 340(2–3), 187 (2005).
13. Ronchi, C., Sheindlin, M., Musella, M., and Hyland, G.J.: Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity. J. Appl. Phys. 85(2), 776 (1999).
14. Powers, J.J. and Wirth, B.D.: A review of TRISO fuel performance models. J. Nucl. Mater. 405(1), 74 (2010).
15. Terrani, K.A., Kiggans, J.O., Katoh, Y., Shimoda, K., Montgomery, F.C., Armstrong, B.L., Parish, C.M., Hinoki, T., Hunn, J.D., and Snead, L.L.: Fabrication and characterization of fully ceramic microencapsulated fuels. J. Nucl. Mater. 426(1–3), 268 (2012).
16. Rondinella, V.V. and Wiss, T.: The high burn-up structure in nuclear fuel. Mater. Today 13(12), 24 (2010).
17. Rashid, J.Y.R., Yagnik, S.K., and Montgomery, R.O.: Light water reactor fuel performance modeling and multi-dimensional simulation. JOM 63(8), 84 (2011).
18. Bertolus, M., Freyss, M., Dorado, B., Martin, G., Hoang, K., Maillard, S., Skorek, R., Garcia, P., Valot, C., Chartier, A., Van Brutzel, L., Fossati, P., Grimes, R.W., Parfitt, D.C., Bishop, C.L., Murphy, S.T., Rushton, M.J.D., Staicu, D., Yakub, E., Nichenko, S., Krack, M., Devynck, F., Ngayam-Happy, R., Govers, K., Deo, C.S., and Behera, R.K.: Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. J. Nucl. Mater. 462, 475 (2015).
19. Tonks, M.R., Liu, X-Y., Andersson, D., Perez, D., Chernatynskiy, A., Pastore, G., Stanek, C.R., and Williamson, R.: Development of a multiscale thermal conductivity model for fission gas in UO2 . J. Nucl. Mater. 469, 89 (2016).
20. Was, G.S. and Allen, T.R.: Radiation damage from different particle types. In Radiation Effects in Solids, Springer: Netherlands, 2007; p. 65.
21. Short, M.P., Dennett, C.A., Ferry, S.E., Yang, Y., Mishra, V.K., Eliason, J.K., Vega-Flick, A., Maznev, A.A., and Nelson, K.A.: Applications of transient grating spectroscopy to radiation materials science. JOM 67(8), 1840 (2015).
22. Hofmann, F., Mason, D.R., Eliason, J.K., Maznev, A.A., Nelson, K.A., and Dudarev, S.L.: Non-contact measurement of thermal diffusivity in ion-implanted nuclear materials. Sci. Rep. 5, 17 (2015).
23. Pakarinen, J., Khafizov, M., He, L., Wetteland, C., Gan, J., Nelson, A.T., Hurley, D.H., El-Azab, A., and Allen, T.R.: Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation. J. Nucl. Mater. 454(1–3), 283 (2014).
24. Cheaito, R., Gorham, C.S., Misra, A., Hattar, K., and Hopkins, P.E.: Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage. J. Mater. Res. 30(9), 1403 (2015).
25. Allan, R., Jon, O., Smith, W.L., and Willenborg, D.L.: Detection of thermal waves through optical reflectance. Appl. Phys. Lett. 46(11), 1013 (1985).
26. Wilson, R.B., Apgar, B.A., Martin, L.W., and Cahill, D.G.: Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties. Opt. Express 20(27), 28829 (2012).
27. Carolyn, A.P. and Gary, L.E.: Transient thermoreflectance from thin metal films. J. Appl. Phys. 60(1), 285 (1986).
28. Cahill, D.G.: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75(12), 5119 (2004).
29. Capinski, W.S. and Maris, H.J.: Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67(8), 2720 (1996).
30. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., and Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793 (2003).
31. Hua, Z.L., Ban, H., Khafizov, M., Schley, R., Kennedy, R., and Hurley, D.H.: Spatially localized measurement of thermal conductivity using a hybrid photothermal technique. J. Appl. Phys. 111(10), 7 (2012).
32. Malen, J.A., Baheti, K., Tong, T., Zhao, Y., Hudgings, J.A., and Majumdar, A.: Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133(8), 7 (2011).
33. Khafizov, M. and Hurley, D.H.: Measurement of thermal transport using time-resolved thermal wave microscopy. J. Appl. Phys. 110(8), 083525 (2011).
34. Maznev, A.A., Hartmann, J., and Reichling, M.: Thermal-wave propagation in thin-films on substrates. J. Appl. Phys. 78(9), 5266 (1995).
35. David, L., Gomes, S., Carlot, G., Roger, J.P., Fournier, D., Valot, C., and Raynaud, M.: Characterization of thermal conductivity degradation induced by heavy ion irradiation in ceramic materials. J. Phys. D: Appl. Phys. 41(3), 035502 (2008).
36. Hurley, D.H., Schley, R.S., Khafizov, M., and Wendt, B.L.: Local measurement of thermal conductivity and diffusivity. Rev. Sci. Instrum. 86(12), 123901 (2015).
37. Hurley, D.H., Wright, O.B., Matsuda, O., and Shinde, S.L.: Time resolved imaging of carrier and thermal transport in silicon. J. Appl. Phys. 107(2), 5 (2010).
38. Khafizov, M., Yablinsky, C., Allen, T.R., and Hurley, D.H.: Measurement of thermal conductivity in proton irradiated silicon. Nucl. Instrum. Methods Phys. Res., Sect. B. 325, 11 (2014).
39. Harp, J.M., Lessing, P.A., and Hoggan, R.E.: Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J. Nucl. Mater. 466, 728 (2015).
40. Khafizov, M., Pakarinen, J., He, L., Yablinsky, C., Allen, T.R., and Hurley, D.H.: Impact of irradiation induced dislocation loops on thermal conductivity. Unpublished manuscript.
41. Chauhan, V.S., Riyad, M.F., Du, X., Wei, C., Zhao, J.C., Tyburska-Püschel, B., and Khafizov, M.: Impact of radiation damage on thermal conductivity and Raman spectra in low dose ion irradiated 3C-SiC. Submitted to Metall. Mater. Trans. E .
42. Pakarinen, J., He, L., Gupta, M., Gan, J., Nelson, A., El-Azab, A., and Allen, T.R.: 2.6 MeV proton irradiation effects on the surface integrity of depleted UO2 . Nucl. Instrum. Methods Phys. Res., Sect. B. 319, 100 (2014).
43. Watanabe, T., Srivilliputhur, S.G., Schelling, P.K., Tulenko, J.S., Sinnott, S.B., and Phillpot, S.R.: Thermal transport in off-stoichiometric uranium dioxide by atomic level simulation. J. Am. Ceram. Soc. 92(4), 850 (2009).
44. Crocombette, J-P. and Proville, L.: Thermal conductivity degradation induced by point defects in irradiated silicon carbide. Appl. Phys. Lett. 98(19), 191905 (2011).
45. Millett, P.C., Tonks, M.R., Chockalingam, K., Zhang, Y., and Biner, S.B.: Three dimensional calculations of the effective Kapitza resistance of UO2 grain boundaries containing intergranular bubbles. J. Nucl. Mater. 439(1–3), 117 (2013).
46. Lee, C.W., Chernatynskiy, A., Shukla, P., Stoller, R.E., Sinnott, S.B., and Phillpot, S.R.: Effect of pores and He bubbles on the thermal transport properties of UO2 by molecular dynamics simulation. J. Nucl. Mater. 456, 253 (2015).
47. Valderrama, B., He, L.F., Henderson, H.B., Pakarinen, J., Jaques, B., Gan, J., Butt, D.P., Allen, T.R., and Manuel, M.V.: Effect of grain boundaries on krypton segregation behavior in irradiated uranium dioxide. JOM 66(12), 2562 (2014).
48. He, L.F., Valderrama, B., Hassan, A.R., Yu, J., Gupta, M., Pakarinen, J., Henderson, H.B., Gan, J., Kirk, M.A., Nelson, A.T., Manuel, M.V., El-Azab, A., and Allen, T.R.: Bubble formation and Kr distribution in Kr-irradiated UO2 . J. Nucl. Mater. 456, 125 (2015).
49. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B. 310, 75 (2013).
50. White, J.T. and Nelson, A.T.: Thermal conductivity of UO2+x and U4O9−y . J. Nucl. Mater. 443(1–3), 342 (2013).
51. Weber, W.J.: Ingrowth of lattice-defects in alpha irradiated UO2 single crystals. J. Nucl. Mater. 98(1–2), 206 (1981).
52. Lynds, L., Young, W.A., Mohl, J.S., and Libowitz, G.G.: An X-ray and density study of nonstoichiometry in uranium oxides. In Nonstoichiometric Compounds; American Chemical Society: Washington, DC, 1963; p. 58.
53. Weber, W.J.: Alpha-irradiation damage in CeO2, UO2 and PuO2 . Radiat. Eff. Defects Solids 83(1–2), 145 (1984).
54. Lucuta, P.G., Matzke, H., and Verrall, R.A.: Thermal conductivity of hyperstoichiometric SIMFUEL. J. Nucl. Mater. 223(1), 51 (1995).
55. Geng, H.Y., Song, H.X., Jin, K., Xiang, S.K., and Wu, Q.: First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide. Phys. Rev. B: Condens. Matter Mater. Phys. 84(17), 104120 (2011).
56. Klemens, P.G.: Thermal conductivity and lattice vibration modes. Solid State Phys. 7, 1 (1958).
57. Abeles, B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131(5), 1906 (1963).
58. He, L.F., Gupta, M., Kirk, M.A., Pakarinen, J., Gan, J., and Allen, T.R.: In situ TEM observation of dislocation evolution in polycrystalline UO2 . JOM 66(12), 2553 (2014).
59. Ye, B., Kirk, M.A., Chen, W., Oaks, A., Rest, J., Yacout, A., and Stubbins, J.F.: TEM investigation of irradiation damage in single crystal CeO2 . J. Nucl. Mater. 414(2), 251 (2011).
60. Khafizov, M., Park, I.W., Chernatynskiy, A., He, L.F., Lin, J.L., Moore, J.J., Swank, D., Lillo, T., Phillpot, S.R., El-Azab, A., and Hurley, D.H.: Thermal conductivity in nanocrystalline ceria thin films. J. Am. Ceram. Soc. 97(2), 562 (2014).
61. Klemens, P.G.: Theory of thermal conductivity in dielectric solids—Effects of radiation damage. Nucl. Instrum. Methods Phys. Res., Sect. B. 1(2–3), 204 (1984).
62. Wei, C., Zheng, X., Cahill, D.G., and Zhao, J-C.: Invited article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev. Sci. Instrum. 84(7), 071301 (2013).
63. Weisensee, P.B., Feser, J.P., and Cahill, D.G.: Effect of ion irradiation on the thermal conductivity of UO2 and U3O8 epitaxial layers. J. Nucl. Mater. 443(1–3), 212 (2013).
64. Nakashima, S. and Harima, H.: Raman investigation of SiC polytypes. Phys. Status Solidi A 162(1), 39 (1997).
65. Sorieul, S., Costantini, J.M., Gosmain, L., Thome, L., and Grob, J.J.: Raman spectroscopy study of heavy-ion-irradiated alpha-SiC. J. Phys.: Condens. Matter 18(22), 5235 (2006).
66. Yugami, H., Nakashima, S., Mitsuishi, A., Uemoto, A., Shigeta, M., Furukawa, K., Suzuki, A., and Nakajima, S.: Characterization of the free-carrier concentrations in doped beta-SiC crystals by Raman-scattering. J. Appl. Phys. 61(1), 354 (1987).
67. Tonks, M.R., Millett, P.C., Nerikar, P., Du, S., Andersson, D., Stanek, C.R., Gaston, D., Andrs, D., and Williamson, R.: Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations. J. Nucl. Mater. 440(1–3), 193 (2013).
68. Valot, C., Bertolus, M., Konings, R., Somers, J., and de Groot, S.: Basic research in support of innovative fuels design for the GEn IV systems: The F-BRIDGE project. Nucl. Eng. Des. 241(9), 3521 (2011).
69. Nichenko, S. and Staicu, D.: Molecular Dynamics study of the effects of non-stoichiometry and oxygen Frenkel pairs on the thermal conductivity of uranium dioxide. J. Nucl. Mater. 433(1–3), 297 (2013).
70. Tonks, M.R.: Neams Software V&V Plan for the MARMOT Software (Idaho National Laboratory, Idaho Falls, m 2014).
71. Petti, D., Maki, J., Hunn, J., Pappano, P., Barnes, C., Saurwein, J., Nagley, S., Kendall, J., and Hobbins, R.: The DOE advanced gas reactor fuel development and qualification program. JOM 62(9), 62 (2010).
72. Petti, D.A., Buongiorno, J., Maki, J.T., Hobbins, R.R., and Miller, G.K.: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222(2–3), 281 (2003).
73. Petti, D.A., Demkowicz, P.A., Maki, J.T., and Hobbins, R.R.: TRISO-coated particle fuel performance. Compr. Nucl. Mater. 3, 151 (2012).
74. Verfondern, K.: Triso fuel performance modeling and simulation. Compr. Nucl. Mater. 3, 755 (2012).
75. Miller, G.K., Petti, D.A., Maki, J.T., and Knudson, D.L.: Updated solution for stresses and displacements in TRISO-coated fuel particles. J. Nucl. Mater. 374(1–2), 129 (2008).
76. Collin, B.P., Petti, D.A., Demkowicz, P.A., and Maki, J.T.: Comparison of fission product release predictions using PARFUME with results from the AGR-1 safety tests. Nucl. Eng. Des. 301, 378 (2016).
77. Rochais, D., Le Meur, G., Basini, V., and Domingues, G.: Microscopic thermal characterization of HTR particle layers. Nucl. Eng. Des. 238(11), 3047 (2008).
78. Miller, G.K., Petti, D.A., Maki, J.T., and Knudson, D.L.: PARFUME Theory and Model Basis Report (Idaho National Laboratory, Idaho Falls, 2009).
79. White, J.T., Nelson, A.T., Dunwoody, J.T., Byler, D.D., Safarik, D.J., and McClellan, K.J.: Thermophysical properties of U3Si2 to 1773 K. J. Nucl. Mater. 464, 275 (2015).
80. Butterworth, G.J. and Forty, C.B.A.: A survey of the properties of copper-alloys for use as fusion-reactor materials. J. Nucl. Mater. 189(3), 237 (1992).
81. Schilling, W. and Ullmaier, H.: Physics of Radiation Damage in Metals, in Materials Science and Technology (Wiley, Berlin, 2006).
82. Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S., and Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329 (2007).
83. Zinkle, S.J. and Snead, L.L.: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44(1), 241 (2014).
84. Katoh, Y., Snead, L.L., Henager, C.H. Jr., Nozawa, T., Hinoki, T., Ivekovic, A., Novak, S., and de Vicente, S.M.G.: Current status and recent research achievements in SiC/SiC composites. J. Nucl. Mater. 455(1–3), 387 (2014).
85. Katoh, Y., Nozawa, T., and Snead, L.L.: Mechanical properties of thin pyrolitic carbon interphase SiC-matrix composites reinforced with near-stoichiometric SiC fibers. J. Am. Ceram. Soc. 88(11), 3088 (2005).
86. Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L.: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448(1–3), 448 (2014).
87. Bragg-Sitton, S., Barrett, K., van Rooyen, I., Hurley, D., and Khafizov, M.: Studying silicon carbide for nuclear fuel cladding. Nucl. Eng. Int. 58(706), 37 (2013).
88. Hurley, D.H., Khafizov, M., and Shinde, S.L.: Measurement of the Kapitza resistance across a bicrystal interface. J. Appl. Phys. 109(8), 083504 (2011).


Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications

  • M. Khafizov (a1), V. Chauhan (a1), Y. Wang (a1), F. Riyad (a1), N. Hang (a1) and D.H. Hurley (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed