Skip to main content Accessibility help

Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming

  • Li-Hong Geng (a1), Xiang-Fang Peng (a2), Xin Jing (a3), Leng-Wan Li (a4), An Huang (a4), Bai-Ping Xu (a5), Bin-Yi Chen (a6) and Hao-Yang Mi (a7)...


Poly(lactic acid) (PLA)/graphene oxide (GO) nanocomposites were prepared by solution mixing. Differential scanning calorimetry results indicated that GO was an effective nucleating agent. The size of spherulites decreased, the density of spherulites increased with increasing GO and the crystallinity of PLA increased from 4.34 to 49.01%. For isothermal crystallization, the crystallization rates of PLA/GO nanocomposites were significantly higher than that of neat PLA, in which t 0.5 reduced from 9.0 to 2.8. Spindle-like nanopores (about 100–200 nm) that arranged like spherulites were prepared by low temperature foaming. It was found that the crystallization rate increase and spherulite morphology change were insignificant when the content of GO exceeded 0.5 wt%, because the excessive GO increased the number of nucleation sites while restricting the PLA crystal growth. Thus, the arrangement of nanopores did not mimick the spherulites because of imperfect crystal morphology.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All

Contributing Editor: Linda S. Schadler



Hide All
1. Nampoothiri, K.M., Nair, N.R., and John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493 (2010).
2. Valarezo, E., Tammaro, L., Malagon, O., Gonzalez, S., Armijos, C., and Vittoria, V.: Fabrication and characterization of poly(lactic acid)/poly(epsilon-caprolactone) blend electrospun fibers loaded with amoxicillin for tunable delivering. J. Nanosci. Nanotechnol. 15, 4706 (2015).
3. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P.J., and Hristova-Bogaerds, D.G.: Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J. Polym. Sci., Part B: Polym. Phys. 47, 2247 (2009).
4. Wang, L., Wang, Y.N., Huang, Z.G., and Weng, Y.X.: Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater. Des. 66, 7 (2015).
5. Pan, P.P., Liang, Z.C., Cao, A., and Inoue, Y.: Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl. Mater. Interfaces 1, 402 (2009).
6. Yu, J. and Qiu, Z.B.: Preparation and properties of biodegradable poly(l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces 3, 890 (2011).
7. Zhao, Y.Y., Qiu, Z.B., and Yang, W.T.: Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). J. Phys. Chem. B 112, 16461 (2008).
8. Pan, H. and Qiu, Z.B.: Biodegradable poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: Enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43, 1499 (2010).
9. Papageorgiou, G.Z., Achilias, D.S., Nanaki, S., Beslikas, T., and Bikiaris, D.: PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochim. Acta 511, 129 (2010).
10. Grady, B.P., Pompeo, F., Shambaugh, R.L., and Resasco, D.E.: Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J. Phys. Chem. B 106, 5852 (2002).
11. Ray, S.S. and Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539 (2003).
12. Shiu, S.C. and Tsai, J.L.: Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites, Part B 56, 691 (2014).
13. Wu, D., Cheng, Y., Feng, S., Yao, Z., and Zhang, M.: Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 52, 6731 (2013).
14. Stankovich, S., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342 (2006).
15. Kim, H., Abdala, A.A., and Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515 (2010).
16. Kuilla, T., Bhadra, S., Yao, D.H., Kim, N.H., Bose, S., and Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350 (2010).
17. Potts, J.R., Dreyer, D.R., Bielawski, C.W., and Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer 52, 5 (2011).
18. Wang, H. and Qiu, Z.: Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: Influences of graphene oxide loading and crystallization temperature. Thermochim. Acta 527, 40 (2012).
19. Wang, H.S. and Qiu, Z.B.: Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim. Acta 526, 229 (2011).
20. Li, L., Yokoyama, H., Nemoto, T., and Sugiyama, K.: Facile fabrication of nanocellular block copolymer thin films using supercritical carbon dioxide. Adv. Mater. 16, 1226 (2004).
21. Siripurapu, S., DeSimone, J.M., Khan, S.A., and Spontak, R.J.: Low-temperature, surface-mediated foaming of polymer films. Adv. Mater. 16, 989 (2004).
22. Yokoyama, H., Li, L., Nemoto, T., and Sugiyama, K.: Tunable nanocellular polymeric monoliths using fluorinated block copolymer templates and supercritical carbon dioxide. Adv. Mater. 16, 1542 (2004).
23. Zhang, C.L., Zhu, B., Li, D.C., and Lee, L.J.: Extruded polystyrene foams with bimodal cell morphology. Polymer 53, 2435 (2012).
24. Salerno, A., Oliviero, M., Di Maio, E., Iannace, S., and Netti, P.A.: Design and preparation of mu-bimodal porous scaffold for tissue engineering. J. Appl. Polym. Sci. 106, 3335 (2007).
25. Salerno, A., Zeppetelli, S., Di Maio, E., Iannace, S., and Netti, P.A.: Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO2 foaming. Macromol. Rapid Commun. 32, 1150 (2011).
26. Martini, J.E., Waldman, F.A., and Suh, N.P.: The production and ananlysis of microcelluar thermoplastic foams. Annu. Tech. Conf. Soc. Plast. Eng. 28, 674 (1982).
27. Sai, H., Tan, K.W., Hur, K., Asenath-Smith, E., Hovden, R., Jiang, Y., Riccio, M., Muller, D.A., Elser, V., Estroff, L.A., Gruner, S.M., and Wiesner, U.: Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530 (2013).
28. Ruiz, J.A.R., Pedros, M., Tallon, J.M., and Dumon, M.: Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers—one step foaming process. J. Supercrit. Fluids 58, 168 (2011).
29. Liu, T., Lei, Y.J., Chen, Z.L., Wang, X.Z., and Luo, S.K.: Effects of processing conditions on foaming behaviors of polyetherimide (PEI) and PEI/polypropylene blends in microcellular injection molding process. J. Appl. Polym. Sci. 132, 4144341452 (2015).
30. Kuang, T.R., Mi, H.Y., Fu, D.J., Jing, X., Chen, B.Y., Mou, W.J., and Peng, X.F.: Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind. Eng. Chem. Res. 54, 758 (2015).
31. Yu, P., Mi, H-Y., Huang, A., Geng, L-H., Chen, B-Y., Kuang, T-R., Mou, W-J., and Peng, X-F.: Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: Formation of open cell structure. Ind. Eng. Chem. Res. 54, 6199 (2015).
32. Zhao, H.B., Cui, Z.X., Sun, X.F., Turng, L.S., and Peng, X.F.: Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind. Eng. Chem. Res. 52, 2569 (2013).
33. Huang, J.N., Jing, X., Geng, L.H., Chen, B.Y., Mi, H.Y., and Peng, X.F.: A novel multiple soaking temperature (MST) method to prepare polylactic acid foams with bi-modal open-pore structure and their potential in tissue engineering applications. J. Supercrit. Fluids 103, 28 (2015).
34. Evanoff, K., Magasinski, A., Yang, J.B., and Yushin, G.: Nanosilicon-coated graphene granules as anodes for Li-ion batteries. Adv. Energy Mater. 1, 495 (2011).
35. Sun, Y. and He, C.B.: Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites. ACS Macro Lett. 1, 709 (2012).
36. Xu, J.Z., Chen, T., Yang, C.L., Li, Z.M., Mao, Y.M., Zeng, B.Q., and Hsiao, B.S.: Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 43, 5000 (2010).
37. Li, Y.H. and Sun, X.S.: Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated MgO. Biomacromolecules 11, 1847 (2010).
38. Jang, J.Y., Kim, M.S., Jeong, H.M., and Shin, C.M.: Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 69, 186 (2009).
39. Hua, L., Kai, W.H., Liang, Z.C., and Inoue, Y.: Polyester/organo-graphite oxide composite: Effect of organically surface modified layered graphite on structure and physical properties of poly(epsilon-caprolactone). J. Polym. Sci., Part B: Polym. Phys. 48, 294 (2010).
40. Zhang, J.M., Duan, Y.X., Sato, H., Tsuji, H., Noda, I., Yan, S., and Ozaki, Y.: Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38, 8012 (2005).
41. Pan, P.J., Zhu, B., Kai, W.H., Dong, T., and Inoue, Y.: Polymorphic transition in disordered poly(l-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41, 4296 (2008).
42. Uvarov, V. and Popov, I.: Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111 (2013).
43. Dong, T., Kai, W.H., Pan, P.J., Cao, A., and Inoue, Y.: Effects of host-guest stoichiometry of alpha-cyclodextrin-aliphatic polyester inclusion complexes and molecular weight of guest polymer on the crystallization behavior of aliphatic polyesters. Macromolecules 40, 7244 (2007).
44. Avrami, M.: Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103 (1939).
45. Guo, X.J., Liu, H.Z., Zhang, J.W., and Huang, J.J.: Effects of polyoxymethylene as a polymeric nucleating agent on the isothermal crystallization and visible transmittance of poly(lactic acid). Ind. Eng. Chem. Res. 53, 16754 (2014).
46. Li, M. and Jeong, Y.G.: Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of poly(butylene terephthalate). J. Appl. Polym. Sci. 125, E532 (2012).
47. Xu, J.Z., Chen, C., Wang, Y., Tang, H., Li, Z.M., and Hsiao, B.S.: Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44, 2808 (2011).
48. Xu, J.Z., Liang, Y.Y., Zhong, G.J., Li, H.L., Chen, C., Li, L.B., and Li, Z.M.: Graphene oxide nanosheet induced intrachain conformational ordering in a semicrystalline polymer. J. Phys. Chem. Lett. 3, 530 (2012).


Investigation of poly(l-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming

  • Li-Hong Geng (a1), Xiang-Fang Peng (a2), Xin Jing (a3), Leng-Wan Li (a4), An Huang (a4), Bai-Ping Xu (a5), Bin-Yi Chen (a6) and Hao-Yang Mi (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed