Skip to main content Accessibility help

Investigation of micro-yield strength and coefficient of thermal expansion of Al–Cu–Mg–Li–Sc–Ag alloys with various contents of Li

  • Ruibin Yang (a1), Junrui Yang (a1), Kun Xie (a1), Zhongxia Liu (a1) and Guotao Zhang (a1)...


In this study, the effects of lithium(Li) content (1.0, 1.5, 2.0, and 2.5 wt%) on the microstructure, micro-yield strength (MYS) and coefficient of thermal expansion (CTE) of Al–Cu–Mg–Li–Sc–Ag alloys were investigated. The results showed that increased Li content promoted the formation of primary T1 phases and secondary T1 precipitates. While the primary T1 phases decreased the MYS of the Al–Cu–Mg–Li–Sc–Ag alloys due to large residual stress and stress concentration, secondary T1 precipitates increased the MYS due to their excellent pinning and impeding effect on mobile dislocations. In addition, the increase in Li content caused the CTETT (i.e., CTE transition temperature) first increased and then decreased, while the CTEH (CTETT to 300 °C) of alloys to first decrease and then increase. The CTEH and CTETT values were influenced by the MYS rather than by the macro-yield strength of alloys, arising from the differences in the amounts of the T1 precipitates among the four tested alloys; this was due to the superior thermal stability of the T1 precipitates.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tolga, D. and Costas, S.: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862 (2014).
2.Wu, W.T., Liu, Z.L., Hu, Y.C., Li, F.D., Bai, S., Xia, P., Wang, A., and Ye, C.W.: Goss texture intensity effect on fatigue crack propagation resistance in an Al–Cu–Mg alloy. J. Alloys Compd. 703, 318 (2018).
3.Wang, X.F., Wu, G.H., Sun, D.L., Qin, C.J., and Tian, Y.L.: Micro-yield property of sub-micron Al2O3 particle reinforced 2024 aluminum matrix composite. Mater. Lett. 58, 333 (2004).
4.Song, Y.F., Ding, X.F., Xiao, L.R., Zhao, X.J., Cai, Z.Y., Guo, L., Li, Y.W., and Zheng, Z.Z.: Effects of two-stage aging on the dimensional stability of Al–Cu–Mg alloy. J. Alloys Compd. 701, 508 (2017).
5.Wada, S., Mabuchi, M., Higashi, K., and Langdon, T.G.: A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity. J. Mater. Res. 11, 1755 (1996).
6.Dong, Y.B., Shao, W.Z., Jiang, J.T., Chao, D.Y., and Zhen, L.: Influence of quenching rate on microstructure and dimensional stability of Al–Cu–Mg–Si alloy. Mater. Sci. Technol. 32, 1861 (2016).
7.Song, Y.F., Ding, X.F., Zhao, X.J., Xiao, L.R., and Guo, L.: The effect of stress-aging on dimensional stability behavior of Al–Cu–Mg alloy. J. Alloys Compd. 718, 298 (2017).
8.Qu, S.G., Lou, H.S., Li, X.Q., Kuang, T.R., and Lou, J.Y.: Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content. Mater. Des. 86, 508 (2015).
9.Cui, Y., Wang, L.F., and Ren, J.Y.: Multi-functional SiC/Al composites for aerospace applications. Chin. J. Aeronaut. 21, 578 (2008).
10.Zhang, F., Sun, P.F., Li, X.C., and Zhang, G.D.: An experimental study on deformation behavior below 0.2% offset yield stress in some SiCp/Al composites and their unreinforced matrix alloys. Mater. Sci. Eng., A 300, 12 (2001).
11.Liu, G.J., Li, W.F., Peng, J.H., and Jun, D.U.: Micro-yield behaviors of Al2O3–SiO2(sf)/Al–Si metal matrix composites. Trans. Nonferrous Met. Soc. China 17, 307 (2007).
12.Wang, X., Wu, S., Wang, C.C., Jiang, L.T., Wu, G.H., and Jiang, D.M.: Effect of heat treatment process on microstructure and dimensional stability of 2A12 aluminum alloy. Trans. Mater. Heat Treat. 34, 41 (2013).
13.Huber, T., Degischer, H.P., Lefranc, G., and Schmitt, T.: Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles. Compos. Sci. Technol. 66, 2206 (2006).
14.Lotfy, A., Pozdniakov, A.V., Zolotorevskiy, V.S., El-khair, M.A., Daoud, A., and Mochugovskiy, A.G.: Novel preparation of Al–5% Cu/BN and Si3N4 composites with analyzing microstructure, thermal and mechanical properties. Mater. Charact. 136, 144 (2018).
15.El-Gallab, M. and Sklad, M.: Machining of Al/SiC particulate metal matrix composites: Part II: Workpiece surface integrity. J. Mater. Process. Technol. 83, 277 (1998).
16.Stadler, F., Antrekowitsch, H., Fragner, W., Kaufmann, H., Pinatel, E.R., and Uggowitzer, P.J.: The effect of main alloying elements on the physical properties of Al–Si foundry alloys. Mater. Sci. Eng., A 560, 481 (2013).
17.Chen, Z.W., Zhao, K., and Fan, L.: Combinative hardening effects of precipitation in a commercial aged Al–Cu–Li–X alloy. Mater. Sci. Eng., A 588, 59 (2013).
18.Deschamps, A., Garcia, M., Chevy, J., Davo, B., and De Geuser, F.: Influence of Mg and Li content on the microstructure evolution of Al–Cu–Li alloys during long-term aging. Acta Mater. 122, 32 (2017).
19.Yang, R.B., Zhi, Q., Wang, F.Z., Zhang, Y.J., Liu, Z.X., Wang, J.F., and Cao, Y.J.: Effects of enhanced solution treatment on microstructure and mechanical properties of Al–Cu–Li–Sc alloy. Mater. Sci. Technol. 34, 1201 (2018).
20.Langan, T.J. and Pickens, J.R.: Identification of strengthening phases in Al–Cu–Li alloy Weldatite TM 049. Aluminum–lithium alloys. In Proceedings of Fifth International Al–Li Conference , T.H. Sanders and E.A Starke, eds. (MCE Publications Ltd., Birmingham, U.K., 1989); p. 691.
21.Montoya, K.A., Heubaum, F.H., Kumar, K.S., and Pickens, J.R.: Compositional effects on the solidus temperature of an Al–Cu–Li–Ag–Mg alloy. Scr. Metall. Mater. 25, 1489 (1991).
22.Gao, W., Xu, J., Teng, J., and Lu, Z.: Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion. J. Mater. Res. 31, 2506 (2016).
23.Bogno, A.A., Valloton, J., Henein, H., Ivey, D.G., Locock, A.J., and Gallerneault, M.: Effects of scandium on hypoeutectic aluminium copper microstructures under low solidification rate conditions. Can. Metall. Q. 57, 148 (2018).
24.Jia, M., Zheng, Z., and Gong, Z.: Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J. Alloys Compd. 614, 131 (2014).
25.Gazizov, M., Teleshov, V., Zakharov, V., and Kaibyshev, R.: Solidification behaviour and the effects of homogenisation on the structure of an Al–Cu–Mg–Ag–Sc alloy. J. Alloys Compd. 509, 9497 (2011).
26.Tolley, A., Radmilovic, V., and Dahmen, U.: Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys. Scr. Mater. 52, 621 (2005).
27.Nayan, N., Nair, K.S., Mittal, M.C., and Sudhakaran, K.N.: Studies on Al–Cu–Li–Mg–Ag–Zr alloy processed through vacuum induction melting (VIM) technique. Mater. Sci. Eng., A 454, 500 (2007).
28.Li, J., Liu, P., Chen, Y., Zhang, X.H., and Zheng, Z.Q.: Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8) Cu–(1.0–1.4) Li alloys. Trans. Nonferrous Met. Soc. China 25, 2103 (2015).
29.Huang, B.P. and Zheng, Z.Q.: Effects of Li content on precipitation in Al–Cu–(Li)–Mg–Ag–Zr alloys. Scr. Mater. 38, 357 (1998).
30.Wu, L., Li, X., Han, G., Ma, N., and Wang, H.: Precipitation behavior of the high-Li-content in situ TiB2/Al–Li–Cu composite. Mater. Charact. 132, 215 (2017).
31.Kumar, K.S. and Heubaum, F.H.: The effect of Li content on the natural aging response of Al–Cu–Li–Mg–Ag–Zr alloys. Acta Mater. 45, 2317 (1997).
32.Zhang, F., Sun, P., Li, X., and Zhang, G.: A comparative study on microplastic deformation behavior in a SiCp/2024Al composite and its unreinforced matrix alloy. Mater. Lett. 49, 69 (2001).
33.Yang, F. and Wu, C.H.: A study on micro-plastic deformation behavior of 2024 A1 alloy. Acta Metall. Sin. 13, 502 (2009).
34.Prasad, N.W. and Ramachandran, T.R.: Phase Diagrams and Phase Reactions in Al–Li alloys[M]//Aluminum–Lithium Alloys (Butterworth-Heinemann Elsevier Ltd., Oxford, U.K., 2014); p. 61.
35.Adrien, J., Maire, E., Estevez, R., Ehrstrom, J.C., and Warner, T.: Influence of the thermomechanical treatment on the microplastic behaviour of a wrought Al–Zn–Mg–Cu alloy. Acta Mater. 52, 1653 (2004).
36.Yang, J.R., Wang, L., Tan, X.R., Zhi, Q., Yang, R.B., Zhang, G.P., Liu, Z.X., Ge, X.H., and Liang, E.J.: Effect of sintering temperature on the thermal expansion behavior of ZrMgMo3O12p/2024Al composite. Ceram. Int. 44, 10744 (2018).
37.Peng, Y., Chen, A., Zhang, L., Liu, W., and Wu, G.: Effect of solution treatment on microstructure and mechanical properties of cast Al–3Li–1.5Cu–0.2Zr alloy. J. Mater. Res. 31, 1124 (2016).
38.Benal, M.M. and Shivanand, H.K.: Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites. Mater. Sci. Eng., A 435, 745 (2006).
39.Balducci, E., Ceschini, L., Messieri, S., Wenner, S., and Holmestad, R.: Thermal stability of the lightweight 2099 Al–Cu–Li alloy: Tensile tests and microstructural investigations after overaging. Mater. Des. 119, 54 (2017).
40.Bonfield, W. and Datta, P.K.: Precipitation hardening in an Al–Cu–Si–Mg alloy at 130 to 220° C. J. Mater. Sci. 11, 1661 (1976).
41.Kellington, S.H., Loveridge, D., and Titman, T.M.: The lattice parameters of some alloys of lithium. J. Phys. D: Appl. Phys. 2, 1162 (1969).
42.Hallstedt, B.: Molar volumes of Al, Li, Mg and Si. Calphad 31, 292 (2007).
43.Singh, V. and Gokhale, A.A.: Melting and Casting of Aluminum–Lithium Alloys[M]//Aluminum–Lithium Alloys (Butterworth-Heinemann Elsevier Ltd., Oxford, U.K., 2014); p. 167.
44.Wu, L., Chen, Y., Li, X., Ma, N., and Wang, H.: Rapid hardening during natural aging of Al–Cu–Li based alloys with Mg addition. Mater. Sci. Eng., A 743, 741 (2019).
45.Liao, H.C., Sun, Y., and Sun, G.X.: Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Mater. Sci. Eng., A 335, 62 (2002).
46.Gilmore, D.L. and Starke, E.A.: Trace element effects on precipitation processes and mechanical properties in an Al–Cu–Li alloy. Metall. Mater. Trans. A 28, 1399 (1997).
47.Edeson, R.L., Aglietti, G.S., and Tatnall, A.R.L.: Dimensional stability of materials subject to random vibration. Precis. Eng. 37, 323 (2013).
48.Cheng, Y., Liang, Y., Mao, Y., Ge, X., Yuan, B., Guo, J., and Liang, E.: A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence. Mater. Res. Bull. 85, 176 (2017).
49.Uju, W.A. and Oguocha, I.N.A.: Thermal cycling behaviour of stir cast Al–Mg alloy reinforced with fly ash. Mater. Sci. Eng., A 526, 100 (2009).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed