Skip to main content Accessibility help

Intermetal dielectric process using spin-on glass for ferroelectric memory devices having SrBi2Ta2O9 capacitors

  • Suk-Kyoung Hong (a1), Yang Han Yoon (a2), Yong Ku Baek (a1), Chang Goo Lee (a1), Chung Won Suh (a1), Seok Won Lee (a1), Young Min Kang (a1), Nam Soo Kang (a1), Cheol Seong Hwang (a3) and Oh Seong Kwon (a3)...


The degradation behavior of integrated Pt/SrBi2Ta2O9/Pt capacitors caused by hydrogen impregnation during the spin-on glass (SOG)-based intermetal dielectric (IMD) process was investigated. SOG was tested as an IMD since it offers better planarity for multilevel metallization processes compared to other SiO2 deposition methods. It was found that the SOG itself does not degrade the ferroelectric performance. Deposition of an under-layer of SiOxNy by plasma-enhanced chemical vapor deposition (PECVD) using SiH4 + N2O + N2 source gases and a SiO2?x capping layer by another PECVD process using SiH4 + N2O source gases produced hydrogen as a reaction by-product. The hydrogen diffused into the SBT layer and degraded the ferroelectric performance during subsequent annealing cycles. A very thin (10 nm) Al2O3 layer grown by atomic layer deposition before the IMD process successfully blocked the impregnation of the hydrogen. Therefore, excellent ferroelectric performance of the SBT capacitors were maintained after the multilevel metallization process as well as passivation. The adoption of SOG in the IMD process greatly improved the surface flatness of the wafer resulting in a higher capacitor yield with very good uniformity in ferroelectric properties over the 8-in.-diameter wafer.


Corresponding author


Hide All
1.Hong, S.K., Baek, Y.K., Yang, B., Kang, Y.M., Lee, C.G., Suh, C.W., and Kang, N.S., in Proc. 7th Int. Workshop on Advanced LSI's and Devices, July 22–24, 1999, (IEEK, Bokwang, Korea, 1999), p. 343.
2.Kwon, O.S., Hwang, C.S., and Hong, S.K., Appl. Phys. Lett. 75, 558 (1999).
3.Hong, S.K., Hwang, C.S., Kwon, O.S., and Kang, N.S., Appl. Phys. Lett. 76, 324 (2000).
4.Kanehara, T., Koiwa, I., Okada, Y., Ashikaga, K., Katoh, H., and Kaifu, K., in Proc. Int. Electron Devices Meet., (IEEE, New York, 1997), p. 601.
5.Zafar, S., Kaushik, V., Laberge, P., Chu, P., Jones, R.E., Hance, R.L., Zurcher, P., White, B.E., Taylor, D., Melnick, B., and Gillespie, S., J. Appl. Phys. 82, 4469 (1997).
6.Hase, T., Noguchi, T., and Miyasaka, Y., Integr. Ferroelectric 16, 29 (1997).
7.Hong, S.K., Suh, C.W., Lee, C.G., Lee, S.W., Kang, E.Y., Kang, N.S., Hwang, C.S., and Kwon, O.S., Appl. Phys. Lett. 77, 76 (2000).
8.Shimamoto, Y., Kushida-Abdelghafar, K., Miki, H., and Fujsaki, Y., Appl. Phys. Lett. 70, 3096 (1997).
9.Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., and Al-Shareef, H.N., Integr. Ferroelectric 16, 77 (1997).
10.Sadashivan, S., Aggarwal, S., Song, T.K., Ramesh, R., Evans, J.T. Jr, Tuttle, B.A., Warren, W.L., and Dimos, D., J. Appl. Phys. 83, 2165 (1998).
11.Colla, E.L., Kholkin, A.L., Taylor, D., Tagantsev, A.K., Brooks, K.G., and Setter, N., Microelectronics Engineering 29, 145 (1995).
12.Furuya, A. and Cuchiaro, J.D., J. Appl. Phys. 84, 6788 (1998).
13.Im, J., Auciello, O., Krauss, A.R., Gruen, D.M., Chang, R.P.H, Kim, S.H., and Kingon, A.I., Appl. Phys. Lett. 74, 1162 (1999).
14.Han, J-P. and Ma, T.P., Appl. Phys. Lett. 71, 1267 (1997).
15.Park, I.S., Kim, Y.K., Lee, S.M., Chung, J.H., Kang, S.B., Park, C.S., Yoo, C.Y., Lee, S.I., and Lee, M.Y., in Proc. Int. Electron Devices Meet., (IEEE, New York, 1997), p. 617.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed