Skip to main content Accessibility help

Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni(P) bond-pads

  • M. Date (a1), K.N. Tu (a1), T. Shoji (a2), M. Fujiyoshi (a2) and K. Sato (a2)...


Sn–9Zn and Sn–8Zn–3Bi solder balls were bonded to Cu or electroless Au/Ni(P)pads, and the effect of aging on joint reliability, including impact reliability, was investigated. For the purpose of quantitatively evaluating the impact toughness ofthe solder joints, a test similar to the classic Charpy impact test was performed.The interfacial compounds formed in the solder/Cu joint during soldering wereCu–Zn intermetallic compounds (IMCs), not Cu–Sn IMCs. One of the Cu–Zn IMCs, γ–Cu5Zn8, thickened remarkably with aging, and eventually its morphology changed from layer-type into discontinuous. The rapid growth of the γ–Cu5Zn8 and void formation at the bond interface led to the significant degradation of the joint reliability due to a ductile-to-brittle transition of the joint. Meanwhile, the compound formed in the solder/Au/Ni(P) joint during soldering was a Au–Zn IMC, above which Zn redeposited during aging. Both the dissolution and diffusion of Ni into the solders were extremely slow, which contributes to negligible void formation at the bond interface. As a result, the solder bumps on the Au/Ni(P) pads were able to maintain the high joint strength and impact toughness even after prolonged aging.



Hide All
1Tu, K.N. and Zeng, K.: Tin-lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng. R 34, 1 (2001).
2Suganuma, K., Murata, T., Noguchi, H. and Toyoda, Y.: Heat resistance of Sn–9Zn solder/Cu interface with or without coating. J. Mater. Res. 15, 884 (2000).
3Kim, K.S., Kim, Y.S., Suganuma, K. and Nakajima, H.: Microstructure changes in Sn–Zn/Cu joints during heat-exposure. J. Jpn. Inst. Electron. Packag. 5, 666 (2002).
4Lee, H.M., Yoon, S.W. and Lee, B.J.: Thermodynamic prediction of interface phases at Cu/solder joints. J. Electron. Mater. 27, 1161 (1998).
5Lee, B.J., Hwang, N.M. and Lee, H.M.: Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation. Acta Mater. 45, 1867 (1997).
6Harris, P.: Interfacial reactions of tin-zinc-bismuth alloys. Soldering Surf. Mount Technol. 11, 46 (1999).
7Chonan, Y., Komiyama, T., Onuki, J., Urao, R., Kimura, T. and Nagano, T.: Influence of P content in electroless plated Ni-P alloy film on interfacial structures and strength between Sn–Zn solder and plated Au/Ni-P alloy film. Mater. Trans. 43, 1887 (2002).
8Yu, S.P., Lin, H.J., Hon, M.H. and Wang, M.C.: Effects of process parameters on the soldering behavior of the eutectic Sn–Zn solder on Cu substrate. J. Mater. Sci.–Mater. Electron. 11, 461 (2000).
9Chan, Y.C., Chiu, M.Y. and Chuang, T.H.: Intermetallic compounds formed during the soldering reactions of eutectic Sn–9Zn with Cu and Ni substrates. Z. Metallkd. 93, 95 (2002).
10Chiu, M.Y., Wang, S.S. and Chuang, T.H.: Intermetallic compounds formed during between liquid Sn–8Zn-3Bi solders and Ni substrates. J. Electron. Mater. 31, 494 (2002).
11Shohji, I., Nakamura, T., Mori, F. and Fujiuchi, S.: Interface reaction and mechanical properties of lead-free Sn–Zn alloy/Cu joints. Mater. Trans. 43, 1797 (2002).
12Nishiura, M., Nakayama, A., Sakatani, S., Kohara, Y., Uenishi, K. and Kobayashi, K.F.: Mechanical strength and microstructure of BGA joints using lead-free solders. Mater. Trans. 43, 1802 (2002).
13Hung, K.C., Chan, Y.C., Ong, H.C., Tu, P.L. and Tang, C.W.: Effect of pinhole Au/Ni/Cu substrate on self-alignment of advanced packages. Mater. Sci. Eng. B 76, 87 (2000).
14Morita, T., Kajiwara, R., Yamamoto, K., Sato, K., Date, M., Shoji, T., Ueno, I., and Okabe, S.: Impact reliability of Pb-free BGA solder joints. Proceedings of the 16th JIEP Annual Meeting, (JIEP, Tokyo, Japan, 2002), p. 107.
15Shoji, T., Yamamoto, K., Kajiwara, R., Morita, T., Sato, K., and Date, M.: Interfacial reactions between Pb-free solders and Cu substrates, in Proceedings of the 16th JIEP Annual Meeting (JIEP, Tokyo, Japan, 2002), p. 97.
16Lyman, T.: Metals Handbook, 8th ed. (American Society for Metals, Materials Park, OH, 1973), Vol. 8.
17Massalski, T.B. and King, H.W.: The lattice spacing relationships in H.C.P. ε and η phases in the systems Cu–Zn, Ag-Zn; Au-Zn and Ag-Cd. Acta Metall. 10, 1171 (1962).
18Schaffer, J.P., Saxena, A., Antolovich, S.D., Sanders, T.H. Jr. and Warner, S.B.: The Science and Design of Engineering Materials (The McGraw-Hill companies, New York, 1999), p. 384.
19Dyson, B.F., Anthony, T.R. and Turnbull, D.: Interstitial diffusion of copper in tin. J. Appl. Phys. 38, 3408 (1967).
20Huang, F.H. and Huntington, H.B.: Diffusion of Sb124, Cd109, Sn113, and Zn65 in tin. Phys. Rev. B 9, 1479 (1974).
21Krautheim, G., Neidhardt, A., Reinhold, U. and Zehe, A.: Impurity diffusion of Sn–113 and Sb-124 in copper. Phys. Lett. 72A, 181 (1979).
22Dutt, M.B. and Sen, S.K.: Diffusion of zinc in copper and silver. Jpn. J. Appl. Phys. 18, 1025 (1979).
23Thwaites, C.J., Warwick, M.E. and Scott, B.: Metals Handbook, 9th ed. (American Society for Metals, Materials Park, OH, 1985), Vol. 9, p. 455.
24Omi, T., Kokunai, S. and Yamamoto, H.: Structure of amorphous Ni-P electrodeposits. Trans. Jpn. Inst. Metals 17, 370 (1976).
25Jang, J.W., Kim, P.G., Tu, K.N., Frear, D.R. and Thompson, P.: Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology. J. Appl. Phys. 85, 8456 (1999).
26Kim, Y.S., Kim, K.S., Hwang, C.W. and Suganuma, K.: Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. J. Alloys Compd. 352, 237 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed