Skip to main content Accessibility help
×
Home

Interfacial plasticity governs strain delocalization in metallic nanoglasses

  • Bin Cheng (a1) and Jason R. Trelewicz (a2)

Abstract

Intrinsic size effects in nanoglass plasticity have been connected to the structural length scales imposed by the interfacial network, and control over this behavior is critical to designing amorphous alloys with improved mechanical response. In this paper, atomistic simulations are employed to probe strain delocalization in nanoglasses with explicit correlation to the interfacial characteristics and length scales of the amorphous grain structure. We show that strength is independent of grain size under certain conditions, but scales with the excess free volume and degree of short-range ordering in the interfaces. Structural homogenization upon annealing of the nanoglasses increases their strength toward the value of the bulk metallic glass; however, continued partitioning of strain to the interfacial regions inhibits the formation of a primary shear band. Intrinsic size effects in nanoglass plasticity thus originate from biased plastic strain accumulation within the interfacial regions, which will ultimately govern strain delocalization and homogenous flow in nanoglasses.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jason.trelewicz@stonybrook.edu

References

Hide All
1.Jing, J., Kramer, A., Birringer, R., Gleiter, H., and Gonser, U.: Modified atomic-structure in a Pd–Fe–Si nanoglass—A mossbauer study. J. Non-Cryst. Solids 113, 167 (1989).
2.Gleiter, H.: Nanoglasses: A new kind of noncrystalline materials. Beilstein J. Nanotechnol. 4, 517 (2013).
3.Fang, J.X., Vainio, U., Puff, W., Wurschum, R., Wang, X.L., Wang, D., Ghafari, M., Jiang, F., Sun, J., Hahn, H., and Gleiter, H.: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12, 458 (2012).
4.Chen, N., Louzguine-Luzgin, D.V., Xie, G.Q., Sharma, P., Perepezko, J.H., Esashi, M., Yavari, A.R., and Inoue, A.: Structural investigation and mechanical properties of a representative of a new class of materials: Nanograined metallic glasses. Nanotechnology 24, 045610 (2013).
5.Chen, N., Frank, R., Asao, N., Louzguine-Luzgin, D.V., Sharma, P., Wang, J.Q., Xie, G.Q., Ishikawa, Y., Hatakeyama, N., Lin, Y.C., Esashi, M., Yamamoto, Y., and Inoue, A.: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433 (2011).
6.Guo, C., Fang, Y., Wu, B., Lan, S., Peng, G., Wang, X-l., Hahn, H., Gleiter, H., and Feng, T.: Ni–P nanoglass prepared by multi-phase pulsed electrodeposition. Mater. Res. Lett. 5, 293 (2017).
7.Cao, Q.P., Liu, J.W., Yang, K.J., Xu, F., Yao, Z.Q., Minkow, A., Fecht, H.J., Ivanisenko, J., Chen, L.Y., Wang, X.D., Qu, S.X., and Jiang, J.Z.: Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass. Acta Mater. 58, 1276 (2010).
8.Shao, H., Xu, Y., Shi, B., Yu, C., Hahn, H., Gleiter, H., and Li, J.: High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling. J. Alloys Compd. 548, 77 (2013).
9.Ritter, Y., Sopu, D., Gleiter, H., and Albe, K.: Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations. Acta Mater. 59, 6588 (2011).
10.Adjaoud, O. and Albe, K.: Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties. Acta Mater. 113, 284 (2016).
11.Adjaoud, O. and Albe, K.: Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations. Acta Mater. 145, 322 (2018).
12.Witte, R., Feng, T., Fang, J.X., Fischer, A., Ghafari, M., Kruk, R., Brand, R.A., Wang, D., Hahn, H., and Gleiter, H.: Evidence for enhanced ferromagnetism in an iron-based nanoglass. Appl. Phys. Lett. 103, 073106 (2013).
13.Chen, N., Wang, D., Feng, T., Kruk, R., Yao, K-F., Louzguine-Luzgin, D.V., Hahn, H., and Gleiter, H.: A nanoglass alloying immiscible Fe and Cu at the nanoscale. Nanoscale 7, 6607 (2015).
14.Wang, J.Q., Chen, N., Liu, P., Wang, Z., Louzguine-Luzgin, D.V., Chen, M.W., and Perepezko, J.H.: The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79, 30 (2014).
15.Wang, X.L., Jiang, F., Hahn, H., Li, J., Gleiter, H., Sun, J., and Fang, J.X.: Plasticity of a scandium-based nanoglass. Scr. Mater. 98, 40 (2015).
16.Li, F.C., Wang, T.Y., He, Q.F., Sun, B.A., Guo, C.Y., Feng, T., and Yang, Y.: Micromechanical mechanism of yielding in dual nano-phase metallic glass. Scr. Mater. 154, 186 (2018).
17.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
18.Gleiter, H., Schimmel, T., and Hahn, H.: Nanostructured solids—From nano-glasses to quantum transistors. Nano Today 9, 17 (2014).
19.Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
20.Sopu, D., Ritter, Y., Gleiter, H., and Albe, K.: Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations. Phys. Rev. B 83, 100202 (2011).
21.Adibi, S., Branicio, P.S., Zhang, Y-W., and Joshi, S.P.: Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses. J. Appl. Phys. 116, 043522 (2014).
22.Cheng, B. and Trelewicz, J.R.: Controlling interface structure in nanoglasses produced through hydrostatic compression of amorphous nanoparticles. Phys. Rev. Mater. 3, 035602 (2019).
23.Wang, C.C., Ding, J., Cheng, Y.Q., Wan, J.C., Tian, L., Sun, J., Shan, Z.W., Li, J., and Ma, E.: Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger. Acta Mater. 60, 5370 (2012).
24.Ghidelli, M., Gravier, S., Blandin, J.J., Djemia, P., Mompiou, F., Abadias, G., Raskin, J.P., and Pardoen, T.: Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 90, 232 (2015).
25.Kumar, G., Desai, A., and Schroers, J.: Bulk metallic glass: The smaller the better. Adv. Mater. 23, 461 (2011).
26.Wang, X., Jiang, F., Hahn, H., Li, J., Gleiter, H., Sun, J., and Fang, J.: Sample size effects on strength and deformation mechanism of Sc75Fe25 nanoglass and metallic glass. Scr. Mater. 116, 95 (2016).
27.Şopu, D. and Albe, K.: Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses. Beilstein J. Nanotechnol. 6, 537 (2015).
28.Adibi, S., Sha, Z-D., Branicio, P.S., Joshi, S.P., Liu, Z-S., and Zhang, Y-W.: A transition from localized shear banding to homogeneous superplastic flow in nanoglass. Appl. Phys. Lett. 103, 211905 (2013).
29.Adibi, S., Branicio, P.S., and Joshi, S.P.: Suppression of shear banding and transition to necking and homogeneous flow in nanoglass nanopillars. Sci. Rep. 5, 15611 (2015).
30.Franke, O., Leisen, D., Gleiter, H., and Hahn, H.: Thermal and plastic behavior of nanoglasses. J. Mater. Res. 29, 1210 (2014).
31.Cubuk, E.D., Ivancic, R.J.S., Schoenholz, S.S., Strickland, D.J., Basu, A., Davidson, Z.S., Fontaine, J., Hor, J.L., Huang, Y-R., Jiang, Y., Keim, N.C., Koshigan, K.D., Lefever, J.A., Liu, T., Ma, X-G., Magagnosc, D.J., Morrow, E., Ortiz, C.P., Rieser, J.M., Shavit, A., Still, T., Xu, Y., Zhang, Y., Nordstrom, K.N., Arratia, P.E., Carpick, R.W., Durian, D.J., Fakhraai, Z., Jerolmack, D.J., Lee, D., Li, J., Riggleman, R., Turner, K.T., Yodh, A.G., Gianola, D.S., and Liu, A.J.: Structure–property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033 (2017).
32.Cheng, Y.Q., Cao, A.J., Sheng, H.W., and Ma, E.: Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 56, 5263 (2008).
33.Schiotz, J., Vegge, T., Di Tolla, F.D., and Jacobsen, K.W.: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971 (1999).
34.Cheng, B. and Trelewicz, J.R.: Design of crystalline-amorphous nanolaminates using deformation mechanism maps. Acta Mater. 153, 314 (2018).
35.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
36.Shi, Y.F. and Falk, M.L.: Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Phys. Rev. B 73, 214201 (2006).
37.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).
38.Mendelev, M.I., Sordelet, D.J., and Kramer, M.J.: Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J. Appl. Phys. 102, 043501 (2007).
39.Cheng, Y.Q., Sheng, H.W., and Ma, E.: Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 014207 (2008).
40.Shimizu, F., Ogata, S., and Li, J.: Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48, 2923 (2007).
41.Cheng, Y.Q., Cao, A.J., and Ma, E.: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).
42.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed