Skip to main content Accessibility help
×
Home

Interface between gold and superconducting YBa2Cu3O7−x

  • Siu-Wai Chan (a1), Lie Zhao (a1), C. Chen (a1), Qi Li (a2) and D.B. Fenner (a2)...

Abstract

Gold (Au) and silver (Ag) are known to be important contact metals on YBa2Cu3O7−x (YBCO). Both metals have been used as additives in fabricating tapes of YBCO and Bi2Sr2CaCu2O8 (BSCCO) materials, and have favorable results in improving not only the flexibility but also the weighted critical currents of the resulting composites. Previous results on superconductor/normal metal/superconductor junctions made using YBCO/Au/YBCO and YBCO/Au/Nb demonstrated that a supercurrent can be induced in the normal metal layers through the proximity effect. Our transmission electron microscopy study of the Au/YBCO interfaces shows a well-bonded interface with no extraneous phases present. Lattice fringes of the (001) plane in YBCO terminated at the interface abruptly. This observation supports previous results of contact resistance of x-ray photoelectron spectroscopy (XPS). Both (001) integral steps and multiples of 1/3 (001) steps were observed at the Au/YBCO interface. When the top gold layer was absent locally, surface degradation was observed as the (001) lattice fringes stopped short from the surface by 10 nm. Our results support that Au is a desirable contact metal and a dependable surface passivation material for YBCO.

Copyright

References

Hide All
1Ma, Q. Y., Schmidt, M. T., Weinman, L. S., Yang, E. S., Sampere, S. M., and Chan, S-W., J. Vacuum Sci. Technol. A 9, 390 (1991).
2Heine, K., Tenbrink, J., and Thoener, M., Appl. Phys. Lett. 55, 24412443 (1989).
3Osamura, K., Takayama, T., and Ochial, S., Supercond. Sci. Technol. 2, 107 (1989).
4Murakami, M., in Studies of High Temperature Superconductors, edited by Narikar, A.V. (Nova Science Publishers, Tokyo, 1991).
5L. J. Masur, Podtburg, E. R., Craven, C. A., Otto, A., Wang, Z. L., Kroeger, D. M., Coulter, J. Y., and Maley, M. P., Physica C 230, 274 (1994).
6Tzeng, Y., Holt, A., and Ely, R., Appl. Phys. Lett. 52, 155 (1988); Ekin, J. W., Panson, A. J., and Blankenship, B. A., Appl. Phys. Lett. 52, 331 (1988); Ekin, J.W., Larson, T. M., Bergen, N. F., Nelson, A. J., Swartzlander, A. B., Kazmerski, L. L., Panson, A. J., and Blankenship, B. A., Appl. Phys. Lett. 52, 1819 (1988).
7Kaiser, D. L., Holtzberg, F., Chisholm, M. F., and Worthington, T. K., J. Cryst. Growth 85, 593 (1987).
8Mankiewich, P. M., Schwartz, D. B., Howard, R. E., Jackel, L. D., Straughn, B. L., Burkhardt, E. G., and Dayem, A.H., 5th Int. Workshop on Future Electron Devices—High Temperature Superconducting Electron Devices-(FED HiTcSc-ED WORK- SHOP), June 2–4, 1988, MIyagi-ZAo, pp. 157160; Manluewich, P. M.et al., IEEE Magn. 25(1990); Greene, L.H., Barner, J. B, Feldmann, W. L., Farrow, L. A., Miceli, P. F., Ramesh, R., Wilkens, B. J., Bagley, B. G., Tarascon, J. M., Wernick, J. H., Giroud, M., and Rowell, J.M., Physica C 162164, 1573(1989); Ono, R. H., Beall, J. A., Cromar, M. W., Harvey, T. E., Johansson, M. E., Reintsema, C. D., and Rudman, D. A., Appl. Phys. Lett. 59, 1126 (1991).
9Li, Q., Fenner, D. B., Hamblen, W. D., and Hamblen, D. G., Appl. Phys. Lett. 62, 2428 (1993); Fenner, D. B., Li, Q., Hamblen, W. D., Johansson, M. E., Hamblen, D. G., Lynds, L., and Budnick, J. I., IEEE Trans. Appl. Supercon. 3, 2104 (1993).
10Chan, S-W., Hwang, D. M., and Nazar, L., J. Appl. Phys. 65, 4719 (1989).
11Feng, Y., Larbalestier, D. C., Babcock, S. E., and Vander Sande, J. B., Appl. Phys. Lett. 61, 1234 (1992).
12Chan, S-W., J. Phys. Chem. Solids 55, 1415 (1994).
13Marshall, A. F. and Ramah, R., in Interfaces in High-Tc Super-conducting systems, edited by Shinde, S.L. and Rudman, D. A. (Springer-Verlag, New York, 1994), p. 71.
14Pendrick, V., Brown, R., Matey, J. R., Findikoglu, A., Xi, X. X., Venkatesan, T., and Inam, A., J. Appl. Phys. 69, 7927 (1991).
15Ekin, J. W., Russek, S. E., Clickner, C. C., and Jeanneret, B., Appl. Phys. Lett. 62, 369 (1993).
16Contact resistivity1 of Au/YBCO interfaces from an ex situ process was reported to be 8.6 × 10–3 Ω cm2 at 300 K and 4.9 × 10–5 Ω cm2 at 77 K, while a lower value13 of 2.6 × 10–7 Ω cm2 at 79 K with oxygen anneal from an exsitu process and even a lower contact resistivity14 in the range of 10–8 – 10–9 Ω cm2 at 4 K from an in situ process without oxygen anneal had been reported.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed