Skip to main content Accessibility help

Instrumented indentation testing of arsenic triselenide–arsenic triiodide pseudobinary glasses with copper

  • Svetlana R. Lukić-Petrović (a1), Ljubica R. Đačanin (a1), Radenko V. Kisić (a1) and Aleksandar M. Antić (a2)


In this research, we performed experimental investigations of the influence of copper presence on hardness of arsenic triselenide (As2Se3)–arsenic triiodide (AsI3) pseudobinary glasses. The samples belong to the group of chalcogenide glasses, that, when compared with oxide glasses, can be synthesized much more easily in a wide variety of compositions, allowing also fine-tuning of their properties. Here, presence of iodine (I) facilitates glass formation, whereas addition of copper (Cu) creates possibility for interesting optoelectronic properties. As it is important to study mechanical properties of materials with respect to their fabrication and manipulation, we report results of instrumented indentation testing (IIT) of bulk samples of Cux[(As2Se3)0.9(AsI3)0.1]100−x with x = 5, 10, 20, and 25 at.% of Cu. This technique enables fast determination of indentation hardness, hardness value according to Vickers and indentation modulus directly from the indentation load–displacement curves. It was shown that all these parameters increase linearly with the increase of copper content. Improvement of the mechanical properties justifies the addition of Cu into the glass matrix.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Mott, N.F. and Davis, E.A.: Electronic Processes in Noncrystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979).
2.Popescu, M.A.: Noncrystalline Chalcogenides (Kluwer Academic Publishers, New York, 2002).
3.Krause, J.T., Kurkjian, C.R, Pinnow, D.A., and Sigety, E.S.: Low acoustic loss chalcogenide glasses–a new category of materials for acoustic and acousto optic applications. Appl. Phys. Lett. 17, 367 (1970).
4.Manika, I. and Teteris, J.: Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films. J. Non-Cryst. Solids 90, 505 (1987).
5.Petrović, D.M., Lukić, S.R., Avramov, M.I., and Khiminets, V.V.: Synthesis and the absorption spectra of Ge-As-S-Se-I system glass. J. Mater. Sci. Lett. 5, 290 (1986).
6.Charnovych, S., Erdélyi, G., Kokenyesi, S., and Csik, A.: Effect of pressure on photoinduced expansion of As0.2Se0.8 layer. J. Non-Cryst. Solids 357, 2349 (2011).
7.Lukić, S.R., Petrović, D.M., Turyantisa, I., and Khiminets, O.V.: Characteristics of optical recording on thin films of quaternary glasses Cu-As-Se-I. J. Mater. Sci. 26, 5517 (1991).
8.Sanghera, J.S., Florea, C.M., Shaw, L.B., Purées, P., Nguyen, V.Q., Bashkansky, M., Dutton, Z., and Aggarwal, I.D.: Nonlinear properties of chalcogenide glasses and fibers. J. Non-Cryst. Solids 354, 462 (2008).
9.Lukić, S.R., Skuban, F., Petrović, D.M., and Šiđanin, L.: Effect of copper on density and microhardness of amorphous AsSeyIz. J. Mater. Sci. Lett. 19, 139 (2000).
10.Lukić, S.R., Petrović, D.M., Skuban, F., Šiđanin, L., and Gúth, I.O.: The morphologies of fractured surfaces and fracture toughness in some As-Se-Sb-S-I glasses. Appl. Surf. Sci. 252, 7917 (2006).
11.Štrbac, D.: Characterization of metal-chalcogenides films from Cu-AsSeyIz system. Ph.D. Thesis, University of Novi Sad, Faculty of Sciences, Novi Sad, 2011.
12.Feltz, A.: Amorphous and Glassy Inorganic Solids (Akademie-Verlag, Berlin, 1983) [in German].
13.Frumar, M., Frumarova, B., and Wagner, T.: Amorphous and glassy semiconducting chalcogenides. In Comprehensive Semiconductor Science and Technology, Bhattacharya, P., Fornari, R., and Kamimura, H., eds. (Elsevier B.V., Amsterdam, Netherlands, 2011); pp. 206261.
14.Vassilev, V.S. and Boycheva, S.V.: Chemical sensors with chalcogenide glassy membranes. Talanta 67, 20 (2005).
15.Adam, J-L.: Lanthanides in nonoxide glasses. Chem. Rev. 102, 2461 (2002).
16.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
17.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
18.Sakharova, N.A., Fernandes, J.V., Antunes, J.M., and Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095 (2009).
19.Cabibbo, M., Ricci, P., Cecchini, R., Rymuza, Z., Sullivan, J., Dub, S., and Cohen, S.: An international round-robin calibration protocol for nanoindentation measurements. Micron 43, 215 (2012).
20.Ullner, C., Beckmann, J., and Morrell, R.: Instrumented indentation test for advanced technical ceramics. J. Eur. Ceram. Soc. 22, 1183 (2002).
21.ISO/DIN 14583: Instrumented Indentation Test for Hardness and Other Materials Parameter (2000).
22.Gong, J. and Li, Y.: An energy-balance analysis for the size effect in low-load hardness testing. J. Mater. Sci. 35, 209 (2000).
23.Sangwal, K., Surowska, B., and Blaziak, P.: Analysis of the indentation size effect in the microhardness measurement of some cobalt-based alloys. Mater. Chem. Phys. 77, 511 (2002).
24.Peng, Z., Gong, J., and Miao, H.: On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data. J. Eur. Ceram. Soc. 24, 2193 (2004).
25.Kavetskyy, T., Borc, J., and Sangwal, K.: Study of indentation microhardness of bismuth-doped As2Se3 glasses. Optoelectron. Adv. Mater. Rapid Commun. 5, 755 (2011).
26.Quinn, J.B., Nguyen, V.Q., Sanghera, J.S., Lloyd, I.K., Pureza, P.C., Miklos, R.E., and Aggarwal, I.D.: Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers. J. Non-Cryst. Solids 325, 150 (2003).
27.Lukić, S.R., Petrović, D.M., Gut, I.O., and Avramov, M.I.: Complex noncrystalline chalcogenides: Technology of preparation and spectral characteristics. J. Res. Phys. 30, 111 (2006).
28.Lukić, S.R. and Petrović, D.M.: Thermal analysis and x-ray diffraction investigation of the copper (I) selenoarsenate (Cu3AsSe4). J. Optoelectron. Adv. Mater. 1, 43 (1999).
29.Lukić, S.R., Petrović, D.M., Petrović, A.F., and Popović, Ž.N.: A study of the structural units in some amorphous semiconductors of the Cu-As-Se-I system by x-ray analysis. Mater. Sci. Forum 321324, 525 (2000).
30.Handbook of Chemistry and Physics, 55th ed.; Weast, R.D. ed.; CRC Press, Cleveland 1974–1975; p. F-207.
31.Lukić, S.R. and Petrović, D.M.: Complex Amorphous Chalcogenides (University of Novi Sad, Faculty of Sciences, Novi Sad, 2002), p. 72 [in Serbian].
32.Bourhis, E.L., Gadaud, P., Guin, J-P., Tournerie, N., Zhang, X.H., Lucas, J., and Rouxel, T.: Temperature dependence of the mechanical behavior of a GeAsSe glass. Scr. Mater. 45, 317 (2001).
33.Guin, J-P., Rouxel, T., Keryvin, V., Sangleboeuf, J-C., Serre, I., and Lucas, J.: Indentation creep of Ge-Se chalcogenide glasses below Tg: Elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids 298, 260 (2002).
34.Guin, J-P., Rouxel, T., Sangleboeuf, J-C., Melscoët, I., and Lucas, J.: Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002).
35.Li, H. and Brad, R.C.: The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28, 917 (1993).
36.Quinn, J.B. and Quinn, G.D.: Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 32, 4331 (1997).


Instrumented indentation testing of arsenic triselenide–arsenic triiodide pseudobinary glasses with copper

  • Svetlana R. Lukić-Petrović (a1), Ljubica R. Đačanin (a1), Radenko V. Kisić (a1) and Aleksandar M. Antić (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed