Skip to main content Accessibility help

Instantaneous photoinitiated synthesis and rapid pulsed photothermal treatment of three-dimensional nanostructured TiO2 thin films through pulsed light irradiation

  • Sijun Luo (a1), Song Zhang (a2), Briley B. Bourgeois (a1), Brian C. Riggs (a1), Kurt A. Schroder (a3), Yueheng Zhang (a4), Jibao He (a4), Shiva Adireddy (a1), Kai Sun (a5), Joshua T. Shipman (a1), Moses M. Oguntoye (a4), Venkata Puli (a1), Wei Liu (a2), Rong Tu (a2), Lianmeng Zhang (a2), Stan Farnsworth (a3) and Douglas B. Chrisey (a1)...


We report a novel approach to the instantaneous photoinitiated synthesis of mixed anatase-rutile nanocrystalline TiO2 thin films with a three-dimensional nanostructure through pulsed white light irradiation of photosensitive Ti-organic precursor films. Pulsed photoinitiated pyrolysis accompanied by instantaneous self-assembly and crystallization occurred to form graphitic oxides-coated TiO2 nanograins. Subsequent pulsed light irradiation working as in situ pulsed photothermal treatment improved the crystalline quality of TiO2 film despite its low attenuation of light. The non-radiative recombination of photogenerated electrons and holes in TiO2 nanograins, coupled with inefficient heat dissipation due to low thermal conductivity, produces enough heat to provide the thermodynamic driving force for improving the crystalline quality. The graphitic oxides were reduced by pulsed photothermal treatment and can be completely removed by oxygen plasma cleaning. This photoinitiated nanofabrication technology opens a promising way for the low-cost and high-throughput manufacturing of nanostructured metal oxides as well as TiO2 nanocrystalline thin films.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:
c) e-mail:


Hide All

Contributing Editor: Edson Roberto Leite



Hide All
1. Hagfeldt, A. and Gratzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).
2. Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
3. Bai, Y., Mora-Sero, I., Angelis, F.D., Bisquert, J., and Wang, P.: Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095 (2014).
4. Linsebigler, A.L., Lu, G., and Yates, J.T.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).
5. Thompson, T.L. and Yates, J.T.: Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 106, 4428 (2006).
6. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).
7. Nakjima, T., Shinoda, K., and Tsuchiya, T.: UV-assisted nucleation and growth of oxide films from chemical solutions. Chem. Soc. Rev. 43, 2027 (2014).
8. Riggs, B.C., Elupula, R., Grayson, S.M., and Chrisey, D.B.: Photonic curing of aromatic thiol-ene click dielectric capacitors via inkjet printing. J. Mater. Chem. A 2, 17380 (2014).
9. Riggs, B.C., Elupula, R., Rehm, C., Adireddy, S., Grayson, S.M., and Chrisey, D.B.: Click-in ferroelectric nanoparticles for dielectric energy storage. ACS Appl. Mater. Interfaces 7, 17819 (2015).
10. Kim, H.S., Dhage, S.R., Shim, D.E., and Hahn, H.T.: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97, 791 (2009).
11. Kang, J.S., Ryu, J., Kim, H.S., and Hahn, H.T.: Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 40, 2268 (2011).
12. Ajayan, P.M., Terrones, M., Guardia, A., Huc, V., Grobert, N., Wei, B.Q., Lezec, H., Ramanath, G., and Ebbesen, T.W.: Nanotubes in a flash-ignition and reconstruction. Science 296, 705 (2002).
13. Huang, J. and Kaner, R.B.: Flash welding of conducting polymer nanofibres. Nat. Mater. 3, 783 (2004).
14. Wang, N., Yao, B.D., Chan, Y.F., and Zhang, X.Y.: Enhanced photothermal effect in Si nanowires. Nano Lett. 3, 475 (2003).
15. Chen, H. and Diebold, G.: Chemical generation of acoustic waves: A ‘giant’ photoacoustic effect. Science 270, 963 (1995).
16. Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751 (2010).
17. Cote, L.J., Cruz-Silva, R., and Huang, J.: Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027 (2009).
18. Gijie, S., Dubin, S., Badakhshan, A., Farrar, J., Danczyk, S.A., and Kaner, R.B.: Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419 (2010).
19. Park, S.H. and Kim, H.S.: Environmentally benign and facile reduction of graphene oxide by flash light irradiation. Nanotechnology 26, 205601 (2015).
20. Stankovich, S., Dikin, D.A., Piner, R.D., Kohhlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).
21. Williams, G., Seger, B., and Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487 (2008).
22. Bell, N.J., Ng, Y.H., Du, A., Coster, H., Smith, S.C., and Amal, R.: Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004 (2011).
23. Wang, J.T., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., and Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724 (2014).
24. Hong, S.K., Song, S.M., Sul, O., and Cho, B.J.: Carboxylic group as the origin of electrical performance degradation during the transfer process of CVD growth graphene. J. Electrochem. Soc. 159, K107 (2012).
25. Koinuma, M., Tateishi, H., Hatakeyama, K., Miyamoto, S., Ogata, C., Funatsu, A., Taniguchi, T., and Matsumoto, Y.: Analysis of reduced graphene oxides by X-ray photoelectron spectroscopy and electrochemical capacitance. Chem. Lett. 42, 924 (2013).
26. Sayers, C.N. and Armstrong, N.R.: X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: Surface compositional changes of the TiO2 electrode during photoelectrolysis. Surf. Sci. 77, 301 (1978).
27. Jellison, G.E. Jr., Boatner, L.A., Budai, J.D., Jeong, B.S., and Norton, D.P.: Spectroscopic ellipsometry of thin film and bulk anatase (TiO2). J. Appl. Phys. 93, 9537 (2003).
28. Krylova, G. and Na, C.: Photoinduced crystallization and activation of amorphous titanium dioxide. J. Phys. Chem. C 119, 12400 (2015).
29. Kim, D.J., Kim, D.S., Cho, S., Kim, S.W., Lee, S.H., and Kim, J.C.: Measurement of thermal conductivity of TiO2 thin films using 3ω method. Int. J. Thermophys. 25, 281 (2004).
30. Fang, J., Reitz, C., Brezesinski, T., Nemanick, E.J., Kang, C.B., Tolbert, S.H., and Pilon, L.: Thermal conductivity of highly-ordered mesoporous titania thin films from 30 to 320 K. J. Phys. Chem. C 115, 14606 (2011).


Type Description Title
Supplementary materials

Luo supplementary material
Luo supplementary material

 Word (1.1 MB)
1.1 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed