Skip to main content Accessibility help
×
Home

Inorganic coordination polymer quantum sheets@graphene oxide composite photocatalysts: Performance and mechanism

  • Shixiong Li (a1), Qiaoling Mo (a1), Xiaoxia Lai (a1), Yufeng Chen (a1), Chuansong Lin (a1), Yan Lu (a1) and Beiling Liao (a2)...

Abstract

Heterogeneous photocatalytic oxidation technology is currently a technology with the potential to solve environmental pollution and energy shortages. The key to this technology is to find and design efficient photocatalysts. Here, a series of inorganic coordination polymer quantum sheets (ICPQS)@graphene oxide (GO) composite photocatalysts are synthesized by adding GO to the synthesis process of ICPQS: {[CuII(H2O)4][CuI4(CN)6]}n. These composite photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, scanning electron microscopy, transmission electron microscopy, Zeta potential, and N2 adsorption/desorption isotherms. The photocatalytic degradation of methylene blue showed that the activity of ICPQS@GO composite photocatalysts is better than that of ICPQS. Among ICPQS@GO composite photocatalysts, the 10.6% ICPQS@GO composite photocatalyst has the best activity, which can reach 3.3 mg/(L min) at pH 3. This method of loading low–specific surface area photocatalysts onto GO to improve photocatalytic performance indicates the direction for the synthesis of highly efficient photocatalysts.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: lsx1324@163.com

References

Hide All
1.Colmenares, J.C. and Luque, R.: Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds. Chem. Soc. Rev. 43, 765 (2014).
2.Yin, X.J. and Zhu, L.G.: High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. J. Mater. Res. 34, 991 (2019).
3.Li, S., Wei, C., Hu, Y., Wu, H., and Li, F.: In situ synthesis and photocatalytic mechanism of a cyano bridged Cu(I) polymer. Inorg. Chem. Front. 5, 1282 (2018).
4.Pasti, L., Sarti, E., Martucci, A., Marchetti, N., Stevanin, C., and Molinari, A.: An advanced oxidation process by photoexcited heterogeneous sodium decatungstate for the degradation of drugs present in aqueous environment. Appl. Catal., B 239, 345 (2018).
5.Mena, E., Rey, A., and Beltrán, F.J.: TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chem. Eng. J. 339, 369 (2018).
6.Saavedra, J., Pursell, C.J., and Chandler, B.D.: CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: Evidence for a common water-assisted mechanism. J. Am. Chem. Soc. 140, 3712 (2018).
7.Schlexer, P., Widmann, D., Behm, R.J., and Pacchioni, G.: CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars–van Krevelen mechanism. ACS Catal. 8, 6513 (2018).
8.Nguyen, C.C., Nguyen, D.T., and Do, T.O.: A novel route to synthesize C/Pt/TiO2 phase tunable anatase–Rutile TiO2 for efficient sunlight-driven photocatalytic applications. Appl. Catal., B 226, 46 (2018).
9.Chiarello, G.L., Ferri, D., and Selli, E.: In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2. Appl. Surf. Sci. 450, 146 (2018).
10.Camacho, S.Y.T., Rey, A., Hernández-Alonso, M.D., Llorca, J., Medina, F., and Contreras, S.: Pd/TiO2–WO3 photocatalysts for hydrogen generation from water-methanol mixtures. Appl. Surf. Sci. 455, 570580 (2018).
11.Shen, R., Xie, J., Ding, Y., Liu, S.Y., Adamski, A., Chen, X., and Li, X.: Carbon nanotube-supported Cu3P as high-efficiency and low-cost cocatalysts for exceptional semiconductor-free photocatalytic H2 evolution. ACS Sustainable Chem. Eng. 7, 3243 (2019).
12.Spanopoulos, I., Tsangarakis, C., Klontzas, E., Tylianakis, E., Froudakis, G., Adil, K., and Trikalitis, P.N.: Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc. 138, 1568 (2016).
13.Yang, X. and Xu, Q.: Bimetallic metal–organic frameworks for gas storage and separation. Cryst. Growth Des. 17, 1450 (2017).
14.Hasan, Z. and Jhung, S.H.: Removal of hazardous organics from water using metal–organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329 (2015).
15.Liao, P.Q., Huang, N.Y., Zhang, W.X., Zhang, J.P., and Chen, X.M.: Controlling guest conformation for efficient purification of butadiene. Science 356, 1193 (2017).
16.Lin, R.B., Xiang, S., Xing, H., Zhou, W., and Chen, B.: Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87 (2019).
17.Lu, Y. and Yan, B.: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(III) complexes. Chem. Commun. 50, 13323 (2014).
18.Shustova, N.B., McCarthy, B.D., and Dinca, M.: Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 133, 20126 (2011).
19.Li, S.X., Liao, B.L., Liao, P., and Jiang, Y.M.: Syntheses, structures, fluorescence and anticancer activity of Co(II) and Ag(I) complexes with 4-(3H)-Quinazolinone. Chinese J. Inorg. Chem. 31, 291 (2015).
20.Liao, B.L., Li, S.X., and Yin, Y.J.: One trinuclear copper(II) polymer based on pyridine-2,4,6-tricarboxylic acid: Synthesis, structure, and magnetic analysis. Russ. J. Coord. Chem. 44, 39 (2018).
21.Liao, B.L., Yang, G.G., Li, S.X., Jiang, Y.M., and Yin, Y.J.: Syntheses, structures and magnetic analysis of Co(II) coordination polymer based on N-(pyridine-3-sulfonyl amino)-acetate. Chinese J. Inorg. Chem. 33, 1843 (2017).
22.Yin, Y.J., Liao, B.L., Wu, H.M., Pang, Y.L., and Li, S.X.: Syntheses, structures and magnetic analysis of Co(II), Ni(II) coordination polymers based on pyridine-2,4,6-tricarboxylic acid. Chinese J. Inorg. Chem. 33, 1043 (2017).
23.Jia, J.J., Li, S.X., and Jiang, Y.M.: Synthesis, crystal structure, and magnetic analysis of Ni(II) polymer based on N-[(3-pyridine)-sulfonyl] aspartate. Inorg. Nano-Met. Chem. 47, 1318 (2017).
24.Hod, I., Sampson, M.D., Deria, P., Kubiak, C.P., Farha, O.K., and Hupp, J.T.: Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302 (2015).
25.Chen, W., Han, B., Tian, C., Liu, X., Liang, S., Deng, H., and Lin, Z.: MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal., B 244, 996 (2019).
26.Li, X., Yu, J., Jaroniec, M., and Chen, X.: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).
27.Pi, Y., Li, X., Xia, Q., Wu, J., Li, Y., Xiao, J., and Li, Z.: Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal–organic frameworks (MOFs). Chem. Eng. J. 337, 351 (2018).
28.Huang, J., Zhang, X., Song, H., Chen, C., Han, F., and Wen, C.: Protonated graphitic carbon nitride coated metal–organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Appl. Surf. Sci. 441, 85 (2018).
29.Azhar, M.R., Vijay, P., Tadé, M.O., Sun, H., and Wang, S.: Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere 196, 105 (2018).
30.Li, X., Xie, J., Jiang, C., Yu, J., and Zhang, P.: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).
31.Li, X., Shen, R., Ma, S., Chen, X., and Xie, J.: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).
32.Zhang, R., Wan, W., Li, D., Dong, F., and Zhou, Y.: Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chin. J. Catal. 38, 313 (2017).
33.Thirugnanam, N., Song, H., and Wu, Y.: Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation. Chin. J. Catal. 38, 2150 (2017).
34.Yan, J., Xu, M., Chai, B., Wang, H., Wang, C., and Ren, Z.: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603 (2017).
35.Challagulla, S. and Roy, S.: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764 (2017).
36.Feng, Z., Zeng, L., Chen, Y., Ma, Y., Zhao, C., Jin, R., Lu, Y., Wu, Y., and He, Y.: In situ preparation of Z-scheme MoO3/gC3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).
37.Li, S., Sun, S., Wu, H., Wei, C., and Hu, Y.: Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal. Sci. Technol. 8, 1696 (2018).
38.Li, S., Feng, Z., Hu, Y., Wei, C., Wu, H., and Huang, J.: In situ synthesis and high-efficiency photocatalytic performance of Cu(I)/Cu(II) inorganic coordination polymer quantum sheets. Inorg. Chem. 57, 13289 (2018).
39.Yin, H. and Tang, Z.: Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45, 4873 (2016).
40.Dou, L., Wong, A.B., Yu, Y., Lai, M., Kornienko, N., Eaton, S.W., Fu, A., Bischak, C.G., Ma, J., Ding, T., Ginsberg, N.S., Wang, L.W., Alivisatos, A.P., and Yang, P.: Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518 (2015).
41.Huang, J., Li, Y., Huang, R.K., He, C.T., Gong, L., Hu, Q., Wang, L.S., Xu, Y.T., Tian, X.Y., Liu, S.Y., Ye, Z.M., Wang, F.X., Zhou, D.D., Zhang, W.X., and Zhang, J.P.: Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem., Int. Ed. 57, 4632 (2018).
42.Han, C., Zhang, Y., Gao, P., Chen, S., Liu, X., Mi, Y., and Chang, J.: High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett. 17, 7767 (2017).
43.Xu, M., Yuan, S., Chen, X.Y., Chang, Y.J., Day, G., Gu, Z.Y., and Zhou, H.C.: Two-dimensional metal–organic framework nanosheets as an enzyme inhibitor: Modulation of the α-chymotrypsin activity. J. Am. Chem. Soc. 139, 8312 (2017).
44.Sim, U., Moon, J., An, J., Kang, J.H., Jerng, S.E., Moon, J., and Nam, K.T.: N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy Environ. Sci. 8, 1329 (2015).
45.Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., and Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013).

Keywords

Type Description Title
WORD
Supplementary materials

Li et al. supplementary material
Figures S1-S6 and Table SI

 Word (5.3 MB)
5.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed