Skip to main content Accessibility help

Influence of matrix characteristics on fracture toughness of high volume fraction Al2O3/Al–AlN composites

  • N. Nagendra (a1) and V. Jayaram (a1)


The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.



Hide All
1.Nagendra, N. and Jayaram, V., J. Mater. Res. 15, 1131 (2000).
2.Mahon, G.J., Howe, J.M., and Vasudevan, A.K.. Acta Metall. Mater. 38, 1503 (1990).
3.Llorca, J., Needleman, A., and Suresh, S., Acta Metall. Mater. 39, 2317 (1991).
4.Shakesheff, A.J., J. Mater. Sci. 30, 2269 (1995).
5.Rozak, G.A., Altmisolgu, A.A., Lewandowski, J.J., and Wallace, J.F., J. Compos. Mater. 26, 2076 (1992).
6.Lewandowski, J.J., Liu, C., and Hunt, W.H., in Processing and Properties of Powder Metallurgy Composites, edited by Kumar, P., Vedula, K., and Ritter, A.M. (TMS/AIME, Warrendale, PA, 1988), p. 117.
7.Liu, C., Pape, S., and Lewandowski, J.J., in Interfaces in Polymer, Ceramic and Metal Matrix Composites, edited by Ishida, H. (Elsevier Science, New York, 1988), p. 513.
8.Manoharan, M. and Lewandowski, J.J., Int. J. Fract. 40, R31 (1989).
9.Doel, T.G.A, Loretto, M.H., and Bowen, P., Composites 24, 270 (1993).
10.Doel, T.G.A and Bowen, P., Mat. Sci. Technol. 12, 586 (1996).
11.Roebuck, B. and Lord, J.D., Mat. Sci. Technol. 12, 1199 (1990).
12.Flom, Y. and Arsenault, R.J., Acta Metall. 37, 2413 (1989).
13.Ritchie, R.O., Mat. Sci. Eng. A 103A, 15 (1988).
14.Aghajanian, M.K., Burke, J.T., White, D.R., and Nagelberg, A.S., SAMPE Quarterly 20, 43 (1989).
15.Breval, E., Aghajanian, M.K., Biel, J.P., and Antolin, S., J. Am. Ceram. Soc. 76, 1865 (1993).
16.Nagendra, N., Ph.D. Thesis, Indian Institute of Science, Bangalore, India (1997).
17.Ribes, H. and Suery, M., Scripta Metall. 23, 705 (1989).
18.Trowle, D.J. and Friend, C.M., Scripta Metall. Mater. 26, 437 (1992).
19.Nieh, T.G. and Karlak, R.F., Scripta Metall. 18, 25 (1984).
20.Christman, T. and Suresh, S., Acta Metall. 36, 1691 (1988).
21.Vogelsang, M., Arsenault, R.J., and Fisher, R.M., Metall. Trans. A 17A, 379 (1986).
22.Arsenault, R.J. and Shi, N., Mater. Sci. Eng., A 81, 175 (1986).
23.Christman, T., Needleman, A., and Suresh, S., Acta. Metall. 37, 3029 (1989).
24.Chawla, K.K., Esmaeli, A.H., Datye, A.K., and Vasudevan, A.K., Scripta Metall. Mater. 25, 1315 (1991).
25.DaFir, D., Guichon, G., Borelly, R., Cardinal, S., Gobin, P.F., and Merle, P., Mater. Sci. Eng. A 144A, 311 (1991).
26.Salvo, L. and Suéry, M., Mater. Sci. Eng., A 177A, 19 (1994).
27.Jacobs, M.H., Philos. Mag. 26, 1 (1972).
28.Thomas, G., J. Inst. Met. 90, 57 (1962).
29.Dorward, R.C., Metall. Trans. 4A, 507 (1973).
30.Pashley, D.W., Jacobs, M.H., Vietz, J.T., Philos. Mag. 16, 51 (1967).
31.Papazian, J.M., Metall. Trans. 19A, 2945 (1988).
32.Shang, J.K., Yu, W., and Ritchie, R.O., Mater. Sci. Eng., A 102A, 191 (1988).
33.Manoharan, M. and Lewandowski, J.J., Scripta Metall. 23, 301 (1989).
34.He, M. and Hutchinson, J.W., Int. J. Solids Struct. 25, 1053 (1989).
35.Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).
36.Evans, A.G., Dalgleish, B.J., He, M., and Hutchinson, J.W., Acta Metall. 37, 3249 (1989).
37.Liu, G., Zhang, Z., and Shang, J.K., Acta Metall. Mater. 42, 271 (1994).
38.Johnson, K.L., J. Mech. Phys. Solids 18, 115 (1970).
39.Leggoe, J.W., Hu, X.Z., Swain, M.V., and Bush, M.B., Scripta. Metall. Mater. 31, 577 (1994).

Influence of matrix characteristics on fracture toughness of high volume fraction Al2O3/Al–AlN composites

  • N. Nagendra (a1) and V. Jayaram (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed