Skip to main content Accessibility help

Influence of growth parameters on the microstructure of directionally solidified Bi2Sr2CaCu2Oy

  • M. J. Cima (a1), X. P. Jiang (a1), H. M. Chow (a1), J. S. Haggerty (a1), M. C. Flemings (a1), H. D. Brody (a2), R. A. Laudise (a3) and D. W. Johnson (a3)...


Laser-heated float zone growth was used to study the directional solidification behavior of Bi–Sr–Ca–Cu–O superconductors. The phases that solidify from the melt, their morphology, and their composition are altered by growth rate. Highly textured microstructures are achieved by directional solidification at all growth rates. The superconducting phase is found always to have the composition Bi2.5Sr2CaCu2.2Oy when grown from boules with composition 2:2:1:2 (BiO1.5:SrO:CaO:CuO). Planar growth fronts of Bi2.5Sr2CaCu2.2Oy are observed when the temperature gradient divided by the growth rate (G/R) is larger than 3 ⊠ 1011 K-s/m2 in 2.75 atm oxygen. Thus, the 2212 compound was observed to solidify directly from the melt at the slowest growth rates used in this study. Measurement of the steady-state liquid zone composition indicates that it becomes bismuth-rich as the growth rate decreases. Dendrites of the primary solidification phase, (Sr1−xCax)14Cu24Oy, form in a matrix of Bi2.5Sr2CaCu2.2Oy when G/R is somewhat less than 3 ⊠ 1011 K-s/m2. Observed microstructures are consistent with a peritectic relationship among Bi2.5Sr2CaCu2.2Oy, (Sr1−xCax)14Cu24Oy (x = 0.4), and a liquid rich in bismuth at elevated oxygen pressure. At lower values of G/R, Sr3Ca2Cu5Oy is the primary solidification phase and negligible Bi2.5Sr2CaCu2.2Oy forms in the matrix.



Hide All
1Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W., Zaluzec, N. J., Flandermeyer, B., deLima, O. F., Hong, M., Kwo, J., and Lion, S. H., J. Appl. Phys. 62 (12), 48214828 (1987).
2Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61 (2), 219222 (1988).
3Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C. C., and McGuire, T. R., Phys. Rev. Lett. 61 (21), 24762479 (1988).
4Haggerty, J. S. and Menashi, W. P., NASA, Contract No. NAS3–13479 (February 1971).
5Haggerty, J. S., Menashi, W. P., and Wenckus, J. F., “Methods of Forming Refractory Fibers by Laser Energy,” U.S. Patent No. 3944640, March 1976.
6Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. van, Kanemlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52 (24), 20742076 (1988).
7Murakami, M., Marita, M., Doi, K., and Miyamoto, K., J. Appl. Phys., preprint (1989).
8Feigelson, R. S., Gazit, D., Fork, D. K., and Geballe, T. H., Science 240, 16421645 (1988).
9Takekawa, S., Nozaki, H., Umizone, A., Kosuda, K., and Kobayashi, M., J. Cryst. Growth 92, 687 (1988).
10Brody, H. D., Haggerty, J. S., Cima, M. J., Flemings, M. C., Barns, R. L., Gyorgy, M., Johnson, D. W., Rhodes, W. W., Sunder, W. A., and Laudise, R. A., J. Cryst. Growth 96, 225233 (1989).
11Shiohara, Y., Nakagawa, M., Suga, T., Ishige, K., Oyama, T., Izumi, T., Nagaya, S., Miyajima, M., Hirabayashi, I., and Tanaka, S., Proc. of 2nd Int. Symp. on Superconductivity, Tsukuba, Japan, 1989 (to be published by Springer-Verlag, Tokyo).
12Pfann, W. G., Zone Melting (John Wiley & Sons, New York, 1958).
13Flemings, M. C., Solidification Processing (McGraw-Hill, New York, 1974).
14Mollard, F. R. and Flemings, M. C., Trans. TMS-AIME 239, 15261533 (1967).
15Rinaldi, M., Sharp, R. M., and Flemings, M. C., Metall. Trans. 3, 3139 (1972).
16David, S. A. and Brody, H. D., Metall. Trans. 5, 26082610 (1974).
17Hunt, J. D. and Jackson, K. A., AIME Trans. 236, 843 (1966).
18Stubican, V. S. and Bradt, R. C., Ann. Rev. Mat. Sci. 11, 287297 (1981).
19Dubois, D., Dhalenne, G., d'Yvoire, F., and Revcolevschi, A., J. Am. Ceram. Soc. 69 (1), C6–C8 (1986).
20Sheherbakov, G., David, S. A., and Brody, H. D., Scripta Metall. 8, 12391244 (1974).
21Brody, H. D. and David, S. A., Solidification and Casting of Metals (Institute of Metals, New York, 1979), pp. 141151.
22Kimura, F. and Shindo, I., J. Cryst. Growth 41, 192198 (1977).
23Chalmers, B., Principles of Solidification (Wiley, J., New York, 1964), pp. 150163.
24Tiller, W. A., Jackson, K. A., Rutter, J. W., and Chalmers, B., Acta Metall. 1, 428 (1953).
25Kurz, W. and Fisher, D. J., Fundamentals of Solidification (Trans. Tech. Publications, Ltd., Switzerland, 1986), pp. 4758.
26Schlesinger, Z., Collins, R. T., and Kaiser, D. L., Phys. Rev. Lett. 59, 19581961 (1987).
27Oka, Y., Yamamoto, N., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. 28 (2), L213–L216 (1989).
28Onoda, M., Yamamoto, A., Takayama-Muromachi, E., and Takekawa, S., Jpn. J. Appl. Phys. 27 (5) L833–L836 (1988).
29Luo, J., Cutro, J. A., Chow, H. M., Cima, M. J., and Rudman, D. A., 1990 APS, March Meeting, Anaheim, CA.
30Guillermo, R., Conflant, P., Boivin, J., and Thomas, D., Rev. de Chim. minerale 15, 153159 (1978).
31Conflant, P., Boivin, J., and Thomas, D., J. Solid State Chem. 18, 133140 (1976).
32Levin, E. M. and Roth, R. S., J. Res. N.B.S. 68A (2), 197206 (1964).
33Chakoumakos, B. C., Ebey, P. S., Sales, B. C., and Sonder, E., J. Mater. Res. 4, 767780 (1989).
34Boivin, J., Thomas, D., and Tridot, G., Acad, C. R.. Sc. Paris 276, 11051107 (1973).
35Roth, R. S., Rawn, C. J., Whitler, J. D., Ritter, J. J., and Burton, B., to be published in the J. Am. Ceram. Soc.
36Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 240, 631634 (1988).
37Saggio, J. A., Sujata, K., Hahn, J., Hwu, S. J., Poeppelmeier, K. R., and Mason, T. O., J. Am. Ceram. Soc. 72 (5), 849853 (1989).
38Lange, F., University of California, Santa Barbara (private communication).
39Gadalla, A. M. and White, J., Trans. Brit. Ceram. Soc. 65 (4), 185 (1966).
40Schmal, N. G. and Minzl, E., Z. Physik. Chem. Frankfurt/M 47, 358 (1965).
41, Teske and Muller-Buschbaum, H-K., Z. Anorg. Allg. Chem. 371, 325332 (1969).
42, Teske and Muller-Buschbaum, H-K., Z. Anorg. Allg. Chem. 379, 234241 (1970).
43Gazit, D., Peszkin, P. N., Moulton, L. V., and Feigelson, R. S., J. Cryst. Growth 98, 545549 (1989).
44Jiang, X. P., Brody, H. D., Cima, M. J., Chow, H. M., Haggerty, J. S., and Flemings, M. C., in preparation.

Influence of growth parameters on the microstructure of directionally solidified Bi2Sr2CaCu2Oy

  • M. J. Cima (a1), X. P. Jiang (a1), H. M. Chow (a1), J. S. Haggerty (a1), M. C. Flemings (a1), H. D. Brody (a2), R. A. Laudise (a3) and D. W. Johnson (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed