Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-01T12:00:54.709Z Has data issue: false hasContentIssue false

Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing

Published online by Cambridge University Press:  11 November 2019

Jhon Alexander Ramírez
Affiliation:
Grupo de Cerámicos y vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Valentina Ospina
Affiliation:
Laboratorio de Genética, Grupo de Biotecnología Animal, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Angie A. Rozo
Affiliation:
Laboratorio de Genética, Grupo de Biotecnología Animal, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Maria I. Viana
Affiliation:
Laboratorio de Genética, Grupo de Biotecnología Animal, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Sebastian Ocampo
Affiliation:
Grupo de Cerámicos y vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Sebastian Restrepo
Affiliation:
Grupo de Cerámicos y vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Neil A. Vásquez
Affiliation:
Laboratorio de Genética, Grupo de Biotecnología Animal, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Carlos Paucar
Affiliation:
Grupo de Cerámicos y vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
Claudia García*
Affiliation:
Grupo de Cerámicos y vítreos, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
*
a)Address all correspondence to this author. e-mail: cpgarcia@unal.edu.co
Get access

Abstract

Scaffolds based on two different geometries were constructed by additive manufacturing: one based on a triply periodic minimal surface, the Schwarz D surface, and the other based on a rectangular geometry with orthogonal through-holes. For construction of the scaffolds, two different materials were used: polylactic acid (PLA) in filament form and alumina in printable paste form. The structure of the resulting scaffolds was characterized via X-ray diffraction and scanning electron microscopy, and cell proliferation was assessed for each geometry and material, using fluorescence microscopy and DNA quantification via NanoDrop. Additive manufacturing allowed us to obtain scaffolds with the assessed materials while guaranteeing the interconnectivity of the pores in each one. The curved surfaces constructed with PLA were more favorable for cell attachment and proliferation of the CHO-K1 cell line.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Brien, F.J.: Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 8895 (2011).CrossRefGoogle Scholar
Migliaresi, C. and Motta, A.: Scaffolds for Tissue Engineering: Biological Design, Materials, and Fabrication (Pan Stanford Publishing, Singapore, 2014).CrossRefGoogle Scholar
Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., and Hošek, J.: Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J. Biol. Eng. 11, 31 (2017).CrossRefGoogle ScholarPubMed
Elsayed, H., Zocca, A., Schmidt, J., Günster, J., Colombo, P., and Bernardo, E.: Bioactive glass-ceramic scaffolds by additive manufacturing and sinter-crystallization of fine glass powders. J. Mater. Res. 33, 19601971 (2018).CrossRefGoogle Scholar
Bruyas, A., Lou, F., Stahl, A.M., Gardner, M., Maloney, W., Goodman, S., and Yang, Y.P.: Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity. J. Mater. Res. 33, 19481959 (2018).CrossRefGoogle ScholarPubMed
Ma, H., Feng, C., Chang, J., and Wu, C.: 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater. 79, 3759 (2018).CrossRefGoogle ScholarPubMed
Lauria, I., Kramer, M., Schröder, T., Kant, S., Hausmann, A., Böke, F., Leube, R., Telle, R., and Fischer, H.: Inkjet printed periodical micropatterns made of inert alumina ceramics induce contact guidance and stimulate osteogenic differentiation of mesenchymal stromal cells. Acta Biomater. 44, 8596 (2016).CrossRefGoogle ScholarPubMed
Moon, Y-W., Choi, I-J., Koh, Y-H., and Kim, H-E.: Porous alumina ceramic scaffolds with biomimetic macro/micro-porous structure using three-dimensional (3-D) ceramic/camphene-based extrusion. Ceram. Int. 41, 1237112377 (2015).CrossRefGoogle Scholar
Al-Ketan, O., Abu Al-Rub, R.K., and Rowshan, R.: The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J. Mater. Res. 33, 343359 (2018).CrossRefGoogle Scholar
Montazerian, H., Davoodi, E., Asadi-Eydivand, M., Kadkhodapour, J., and Solati-Hashjin, M.: Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Mater. Des. 126, 98114 (2017).CrossRefGoogle Scholar
Maskery, I., Sturm, L., Aremu, A.O., Panesar, A., Williams, C.B., Tuck, C.J., Wildman, R.D., Ashcroft, I.A., and Hague, R.J.M.: Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer 152, 6271 (2018).CrossRefGoogle Scholar
Afshar, M., Anaraki, A.P., Montazerian, H., and Kadkhodapour, J.: Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. J. Mech. Behav. Biomed. Mater. 62, 481494 (2016).CrossRefGoogle ScholarPubMed
Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., and Spence, D.M.: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 32403253 (2014).CrossRefGoogle ScholarPubMed
Campbell, I., Bourell, D., and Gibson, I.: Additive manufacturing: Rapid prototyping comes of age. Rapid Prototyp. J. 18, 255258 (2012).CrossRefGoogle Scholar
Mamatha, S., Biswas, P., Ramavath, P., Das, D., and Johnson, R.: 3D printing of complex shaped alumina parts. Ceram. Int. 44, 1927819281 (2018).CrossRefGoogle Scholar
Zadpoor, A.A.: Bone tissue regeneration: The role of scaffold geometry. Biomater. Sci. 3, 231245 (2015).CrossRefGoogle ScholarPubMed
Bidan, C.M., Kommareddy, K.P., Rumpler, M., Kollmannsberger, P., Fratzl, P., and Dunlop, J.W.C.: Geometry as a factor for tissue growth: Towards shape optimization of tissue engineering scaffolds. Adv. Healthcare Mater. 2, 186194 (2013).CrossRefGoogle ScholarPubMed
Bidan, C.M., Kommareddy, K.P., Rumpler, M., Kollmannsberger, P., Bréchet, Y.J.M., Fratzl, P., and Dunlop, J.W.C.: How linear tension converts to curvature: Geometric control of bone tissue growth. PLoS One 7, e36336 (2012).CrossRefGoogle ScholarPubMed
Bobbert, F.S.L., Lietaert, K., Eftekhari, A.A., Pouran, B., Ahmadi, S.M., Weinans, H., and Zadpoor, A.A.: Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 53, 572584 (2017).CrossRefGoogle ScholarPubMed
Manzanilla, L.: Cobá, quintana roo: Análisis de dos unidades habitacionales mayas. Ser. Antropológica Arqueol. 1, 302 (1987).Google Scholar
Fantini, M., Curto, M., and De Crescenzio, F.: TPMS for interactive modelling of trabecular scaffolds for bone tissue engineering. Lect. Notes Mech. Eng. 1, 425435 (2017).CrossRefGoogle Scholar
Restrepo, S., Ocampo, S., Ramírez, J.A., Paucar, C., and García, C.: Mechanical properties of ceramic structures based on triply periodic minimal surface (TPMS) processed by 3D printing mechanical properties of ceramic structures based on triply periodic minimal surface (TPMS) processed by 3D printing. J. Phys.: Conf. Ser. 935, 012036 (2017).Google Scholar
Baena, J.A., Valle, D., José, Á., Moreno, R., Gómez Alegría, C.J., Esther, D., and Camargo, G.: Comparación de métodos de extracción de ADN en tejidos parafinados y utilidad para amplificación por PCR comparison of DNA extraction methods from formalin-fixed paraffin sections for RCP amplification. Rev. Colomb. Biotecnol. XV, 172179 (2013).Google Scholar
Supplementary material: Image

Ramírez et al. supplementary material

Ramírez et al. supplementary material 1

Download Ramírez et al. supplementary material(Image)
Image 4.1 MB
Supplementary material: Image

Ramírez et al. supplementary material

Ramírez et al. supplementary material 2
Download Ramírez et al. supplementary material(Image)
Image 109.6 KB