Skip to main content Accessibility help

Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors

  • T. Lindner (a1), G. Paasch (a1) and S. Scheinert (a2)


Numerical simulations of organic field-effect transistors (OFET) of bottom and top contact (BOC, TOC) design with different source/drain contacts were carried out considering an exponential distribution of trap states in the gap of the active layer (a-Si model). For ohmic contacts, the current-voltage characteristics are similar to the trap-free case and there is not much difference between the two designs. However, the currents are lower due to immobile trapped charges, the threshold voltage is shifted, and the inverse subthreshold slope increases due to trap recharging. An analytical approximation for the effective mobility deviates from the simulation up to 20%. For low source/drain work function, there occur particular dependencies of the current on the gate voltage for the two designs, which are explained with the internal concentration and field profiles. A series resistance between source and channel causes in the TOC structure an abrupt transition from the gate voltage independent active region into saturation. In the BOC case, the reverse-biased Schottky-type source contact dominates the current. Through simulation of measured characteristics of prepared OFETs based on a modified poly-(phenylene-vinylene), the observed hysteresis is analyzed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Sirringhaus, H., Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).
2.Dodabalapur, A., Bao, Z., Makhija, A., Laquindanum, J.G., Raju, V.R., Feng, Y., Katz, H.E. and Rogers, J.: Organic smart pixels. Appl. Phys. Lett. 73, 142 (1998).
3.Matters, M., de Leeuw, D.M., Vissenberg, M.J.C.M., Hart, C.M., Herwig, P.T., Geuns, T., Mutsaers, C.M.J. and Drury, C.J.: Organic field-effect transistors and all-polymer integrated circuits. Optical Materials 12, 189 (1999).
4.Crone, B., Dodabalapur, A., Lin, Y-Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E. and Li, W.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).
5.Gelinck, G.H., Geuns, T.C.T. and de Leeuw, D.M.: High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487 (2000).
6.Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M. and de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73(1), 108 (1998).
7.Lin, Y-Y., Dodabalapur, A., Sarpeshkar, R., Bao, Z., Li, W., Baldwin, K., Raju, V.R. and Katz, H.E.: Organic complementary oscillators. Appl. Phys. Lett. 74, 2714 (1999).
8.Brown, A.R., Pomp, A., de Leeuw, D.M., Klaassen, D.B.M. and Havinga, E.E.: Precursor route pentacene metal-insulator-semiconductor field-effect transistors. J. Appl. Phys. 79, 2136 (1996).
9.Koezuka, H., Tsumura, A., Fuchigami, H. and Kuramoto, K.: Polythiophene field-effect transistor with polypyrrole worked as source and drain electrodes. Appl. Phys. Lett. 62, 1794 (1993).
10.Fuchigami, H., Tsumura, A. and Koezuka, H.: Polythienylenevinylene thin-film transistor with high carrier mobility. Appl. Phys. Lett. 63, 1372 (1993).
11.Sze, S.M.: Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons; New York, Chichester, Brisbane, Toronto, Singapore, 1981)
12.Brown, A.R., de Leeuw, D.M., Havinga, E.E. and Pomp, A.: A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors. Synth. Met. 68, 65 (1994).
13.Scheinert, S., Paasch, G., Pohlmann, S., Hörhold, H-H. and Stockmann, R. Field effect in organic devices based on solution-doped Arylamino-PPV. Proceedings ESSDERC’99, Editions Frontiers, 1999, p. 704
14.Scheinert, S., Paasch, G., Pohlmann, S., Hörhold, H-H. and Stockmann, R.: Field effect in organic devices with solution-doped arylamino-poly-(p-phenylene-vinylene). Solid-State Electronics 44, 845 (2000).
15.Paasch, G., Scheinert, S. and Tecklenburg, R. Theory and modelling of organic field effect transistors. Proceedings ESSDERC’97, edited by Grünbacher, H., Editions Frontiers, 1997, p. 636
16.Tecklenburg, R., Paasch, G. and Scheinert, S.: Theory of organic field effect transistors. Adv. Mater. Opt. Electron. 8, 285 (1998).
17.Scheinert, S., Paasch, G., Tecklenburg, R. and Schipanski, D. Organic FET current characteristics: Extraction of unusual field dependencies of hopping mobilities. Proceedings ESSDERC’98, edited by Touboul, A., Danto, Y., Klein, J.P., Grünbacher, H., Editions Frontiers, 1998, p. 628
18.Scheinert, S., Paasch, G., Tecklenburg, R. and Schipanski, D. A novel method to determine field dependencies of mobilities from MOSFET current characteristics. 43rd International Scientific Colloquium 1998, edited by Gens, W., Ilmenau, TU, 1998, p. 305
19.Vissenberg, M.C.J.M. and Matters, M.: Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. 57, 12964 (1998).
20.Horowitz, G. and Delannoy, P.: An analytical model for organic-based thin-film transistors. J. Appl. Phys. 70, 469 (1991).
21.Scheinert, S., Paasch, G., Schrödner, M., Roth, H-K., Sensfuβ, S. and Doll, Th.: Subthreshold characteristics of field effect transistors based on P3DDT and an organic insulator. J. Appl. Phys. 92, 330 (2002).
22.Tessler, N. and Roichman, Y.: Two-dimensional simulation of polymer field-effect transistor. Appl. Phys. Lett. 79, 2987 (2001).
23.Roichman, Y. and Tessler, N.: Structures of polymer field-effect transistor: Experimental and numerical analyses. Appl. Phys. Lett. 80, 151 (2002).
24.Li, T., Balk, J.W., Ruden, P.P., Campbell, I.H. and Smith, D.L.: Channel formation in organic field-effect transistors. J. Appl. Phys. 91, 4312 (2002).
25.Li, T., Ruden, P.P., Campbell, I.H. and Smith, D.L.: Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling. J. Appl. Phys. 93, 4017 (2003).
26.Shur, M., Hack, M. and Shaw, J.G.: A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66, 3371 (1989).
27.Shur, M. and Hack, M.: Physics of amorphous silicon based alloy field-effect transistors. J. Appl. Phys. 55, 3831 (1984).
28.Shaw, J.G. and Hack, M.: An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 64, 4562 (1988).
29.Chung, K.Y. and Neudeck, G.W.: Analytical modelling of a-Si:H thin-film transistors. J. Appl. Phys. 62, 4617 (1987).
30. ATLAS User’s Manual Version 1.5.0, Device Simulation Software (SILVACO International, Santa Clara, CA, 1997).
31.Horowitz, G., Hajlaoui, R. and Delannoy, P.: Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. J. Phys III. 5, 355 (1995).
32.Schauer, F.: Temperature dependent field effect in organic-based thin-film transistor and its spectroscopic character. J. Appl. Phys. 86, 524 (1999).
33.Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).
34.Horowitz, G., Hajlaoui, M.E. and Hajlaoui, R.: Temperature and gate voltage dependence of hold mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000).
35.Scheinert, S., Paasch, G. and Lindner, T.: Relevance of organic field effect transistor models: Simulation vs. Experiment. Synth. Met. 137, 1451 (2003).
36.ISE-TCAD, Integrated Systems Engineering AG (Zürich, Switzerland, 19951999)
37.Scheinert, S., Paasch, G., Nguyen, P.H., Berleb, S. and Brütting, W. Transient I-V characteristics of OLEDs with deep traps. Proceedings ESSDERC’00, edited by Lane, W.A., Crean, G.M., McCabe, F.A., and Grünbacher, H., Editions Frontiers, 2000, p. 444
38.Nguyen, P.H., Scheinert, S., Berleb, S., Brütting, W. and Paasch, G.: The influence of deep traps on transient current-voltage characteristics of organic light-emitting diodes. Org. Electron. 2, 105 (2001).
39.Nesterov, A., Paasch, G., Scheinert, S. and Lindner, T.: Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 130, 165 (2002).
40.Scheinert, S. and Schliefke, W.: Analyzes of filed effect devices based on poly-(3-octoylthiophene). Synth. Met. 139, 501 (2003).
41.Brown, P.J., Sirringhaus, H., Harrison, M., Shkunov, M. and Friend, R.H.: Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys. Rev. B 63, 125204 (2001).
42.Brown, A.R., Jarrett, C.P., de Leeuw, D.M. and Matters, M.: Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37 (1997).
43.Paasch, G.Transport in doped conjugated polymers with polarons and bipolarons forming complexes with counter ions. Solid State Ionics 169, 87 (2004).


Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors

  • T. Lindner (a1), G. Paasch (a1) and S. Scheinert (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed