Skip to main content Accessibility help

Influence of different casting processes on high cycle fatigue behavior of Mg–10Gd–3Y–0.5Zr alloy

  • Jimei Mao (a1), Wencai Liu (a2), Yanlei Li (a1), Guangling Wei (a1), Liang Zhang (a1), Wenbing Zou (a3), Ying Tian (a3) and Guohua Wu (a1)...


In this present study, the influence of different casting processes on high cycle fatigue behavior of Mg–10Gd–3Y–0.5Zr magnesium alloy was investigated by using porosity-free low-pressure sand-casting (LPS) bars and gravity permanent mold casting (GPM) ingots. The results show that the fatigue properties of both LPS and GPM Mg–10Gd–3Y–0.5Zr alloy in as-cast condition are determined by Mg matrix and eutectic phase. However, the fatigue property improvement for LPS alloy by T6 heat treatment is significantly superior to that of GPM alloy. The different degree of enhancement of fatigue properties for two conditions of the alloy is related to different crack initiation mechanism. The fatigue crack of the LPS alloy initiates from the free surface of the sample, while the crack of the GPM alloy initiates from porosities or inclusions near the surface of the sample. Meanwhile, the crack of slip band has a crucial effect on the fatigue crack initiation of both as-cast and T6 conditions for LPS alloy.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Liu, W.C., Jiang, L.K., Cao, L., Mei, J., Wu, G.H., Zhang, S., Xiao, L., Wang, S.H., and Ding, W.J.: Fatigue behavior and plane-strain fracture toughness of sand-cast Mg–10Gd–3Y–0.5Zr magnesium alloy. Mater. Des. 59, 466 (2014).
2. Chang, J.W., Guo, X.W., Fu, P.H., Peng, L.M., and Ding, W.J.: Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt%) alloy. Electrochim. Acta 52(9), 3160 (2007).
3. Li, Y.L., Wu, G.H., Chen, A.T., and Jafari Nodooshan, H.R.: Effect of Gd and Zr additions on the microstructure and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J. Mater. Res. 30(22), 3461 (2015).
4. Luo, A.A.: Magnesium casting technology for structural applications. J. Magnesium Alloys 1(1), 2 (2013).
5. Zhu, Z.J., Gharghouri, M.A., Medraj, M., Lee, S.Y., and Pelton, A.D.: Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce plus Mg plus Zn) system. J. Chem. Thermodyn. 93, 242 (2016).
6. Jiang, L.K., Liu, W.C., Wu, G.H., and Ding, W.J.: Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 612, 293 (2014).
7. Huo, L., Han, Z.Q., and Liu, B.C.: Effect of microstructure on tensile and fatigue properties of cast Mg–10Gd–2Y–0.5Zr alloy. Int. J. Cast Met. Res. 22, 123 (2009).
8. Horstemeyer, M.F., Yang, N., Gall, K., McDowell, D.L., Fan, J., and Gullett, P.M.: High cycle fatigue of a die cast AZ91E–T4 magnesium alloy. Acta Mater. 52(5), 1327 (2004).
9. Xu, D.K., Liu, L., Xu, Y.B., and Han, E.H.: The crack initiation mechanism of the forged Mg–Zn–Y–Zr alloy in the super–long fatigue life regime. Scr. Mater. 56(1), 1 (2007).
10. Anyanwu, I.A., Kamado, S., and Kojima, Y.: Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42(7), 1206 (2001).
11. Li, J.L., Chen, R.S., Ma, Y.Q., and Ke, W.: Computer-aided cooling curve thermal analysis and microstructural characterization of Mg–Gd–Y–Zr system alloys. Thermochim. Acta 590, 232 (2014).
12. He, S.M., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., and Ding, W.J.: Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5 Zr alloy. J. Alloys Compd. 427(2), 316 (2007).
13. Liu, W.C., Wu, G.H., Zhai, C.Q., Ding, W.J., and Korsunsky, A.M.: Grain refinement and fatigue strengthening mechanisms in as-extruded Mg–6Zn–0.5Zr and Mg–10Gd–3Y–0.5Zr magnesium alloys by shot peening. Int. J. Plast. 49, 16 (2013).
14. Liu, W.C., Dong, J., Zhang, P., Korsunsky, A.M., Song, X., and Ding, W.J.: Improvement of fatigue properties by shot peening for Mg–10Gd–3Y alloys under different conditions. Mater. Sci. Eng., A 528(18), 5935 (2011).
15. Dong, J., Liu, W.C., Song, X., Zhang, P., Ding, W.J., and Korsunsky, A.M.: Influence of heat treatment on fatigue behavior of high-strength Mg–10Gd–3Y alloy. Mater. Sci. Eng., A 527, 6053 (2010).
16. Jiang, L.K., Liu, W.C., Li, Y.L., Wu, G.H., and Ding, W.J.: High cycle fatigue behavior of different regions in a low-pressure sand-cast GW103K magnesium alloy component. J. Mater. Res. 29(21), 2587 (2014).
17. Zhang, P. and Lindemann, J.: Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scr. Mater. 52(6), 485 (2005).
18. Fu, P.H., Peng, L.M., Nie, J.F., Jiang, H.Y., Ma, L., and Bourgeois, L.: Ductility improvement of Mg–Nd–Zr cast alloy by trace addition of Zn. Mater. Sci. Forum 690, 230 (2011).
19. Shen, J., Kondoh, K., Jones, T.L., Mathaudhu, S.N., Kecskes, L.J., and Wei, Q.: Effect of strain rate on the mechanical properties of magnesium alloy AMX602. Mater. Sci. Eng., A 649, 338 (2016).
20. Ren, X.D., Huang, J.J., Zhou, W.F., Xu, S.D., and Liu, F.F.: Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing. Mater. Des. 86, 421 (2015).
21. Wang, Q.G., Apelian, D., and Lados, D.A.: Fatigue behavior of A356-T6 aluminum cast alloys. Part 1. Effect of casting defects. J. Light Met. 1, 73 (2001).
22. Li, Z.M., Fu, P.H., Peng, L.M., Wang, Y.X., Jiang, H.Y., and Wu, G.H.: Comparison of high cycle fatigue behaviors of Mg–3Nd–0.2Zn–Zr alloy prepared by different casting processes. Mater. Sci. Eng., A 579, 170 (2013).
23. Kadiri, H.E., Xue, Y., Horstemeyer, M.F., Jordon, J.B., and Wang, P.T.: Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy. Acta Mater. 54(19), 5061 (2006).
24. Gall, K., Biallas, G., Maier, H.J., Horstemeyer, M.F., and McDowell, D.L.: Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Mater. Sci. Eng., A 396, 143 (2005).
25. Höppel, H.W., Prell, M., May, L., and Göken, M.: Influence of grain size and precipitates on the fatigue lives and deformation mechanisms in the VHCF–regime. Proc. Eng. 2(2), 1025 (2010).
26. Clark, J.B.: Age hardening in a Mg-9 wt% Al alloy. Acta Metal. 16(2), 141 (1968).


Related content

Powered by UNSILO

Influence of different casting processes on high cycle fatigue behavior of Mg–10Gd–3Y–0.5Zr alloy

  • Jimei Mao (a1), Wencai Liu (a2), Yanlei Li (a1), Guangling Wei (a1), Liang Zhang (a1), Wenbing Zou (a3), Ying Tian (a3) and Guohua Wu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.