Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T13:55:32.669Z Has data issue: false hasContentIssue false

Influence of cooling rate on the structure and properties of a Cu–Zr–Ti–Ag glassy alloy

Published online by Cambridge University Press:  31 January 2011

Dmitri V. Louzguine-Luzgin*
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Takanobu Saito
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Junji Saida
Affiliation:
Center for Interdisciplinary Research, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: dml@imr.tohoku.ac.jp
Get access

Abstract

The influence of the cooling rate on the structure, microhardness, relaxation, and devitrification behavior of Cu44Ag15Zr36Ti5 glassy alloy on heating is studied in the present work. According to transmission electron microscopy investigations, the structures of Cu44Ag15Zr36Ti5 glassy ribbon and bulk samples are somewhat different. The structure of the ribbon samples is amorphous while, the nanoscale clusters of the crystalline phase (highly ordered regions) are formed in the bulk samples. It is reflected in the shift of the x-ray diffraction peak, in the magnitude of the heat of structure relaxation and crystallization, as well as in the change in the Vickers microhardness. An analysis of the cooling curve is also performed.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 1995CrossRefGoogle Scholar
2Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
3Cohen, M.H.Grest, G.S.: Liquid-glass transition, a free-volume approach Phys. Rev. B: Condens. Matter 20, 1077 1979CrossRefGoogle Scholar
4van den Beukel, A.Sietsma, J.: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 1990CrossRefGoogle Scholar
5Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 1995CrossRefGoogle ScholarPubMed
6Busch, R.: The thermophysical properties of bulk metallic glass-forming liquids. J. Met. 52, 39 2000Google Scholar
7Louzguine-Luzgin, D.V.Inoue, A.: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 2005CrossRefGoogle ScholarPubMed
8Perepezko, J.H.Hebert, R.J.: Amorphous aluminum alloys-synthesis and stability. J. Metall. 54, 34 2002Google Scholar
9Egami, T.: Atomistic mechanism of bulk metallic glass formation. J. Non-Cryst. Solids 317, 30 2003CrossRefGoogle Scholar
10Lu, Z.P.Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 2002CrossRefGoogle Scholar
11Miracle, D.B., Sanders, W.S.Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 2003CrossRefGoogle Scholar
12Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M.Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006CrossRefGoogle ScholarPubMed
13Inoue, A., Zhang, W., Zhang, T.Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 49, 2645 2001CrossRefGoogle Scholar
14Lin, X.H.Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 1995CrossRefGoogle Scholar
15Louzguine, D.V.Inoue, A.: Structural and thermal investigations of a high-strength Cu-Zr-Ti-Co bulk metallic glass. Philos. Mag. Lett. 83, 191 2003CrossRefGoogle Scholar
16Inoue, A.Zhang, W.: Bulk glassy Cu-based alloys with a large supercooled liquid region of 110 K. Appl. Phys. Lett. 83, 2351 2003CrossRefGoogle Scholar
17Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R.Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 2005CrossRefGoogle Scholar
18Aronin, A.S., Abrosimova, G.E., Gurov, A.F., Kir’yanov, Yu.V.Molokanov, V.V.: Nanocrystallization of bulk Zr-Cu-Ti metallic glass. Mater. Sci. Eng., A 304–306, 375 2001CrossRefGoogle Scholar
19Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed
20Desré, P.J.: On the effect of the number of components on glass-forming ability of alloys from the liquid state: Application to the new generation of multicomponent bulk glasses. Mater. Trans., JIM 38, 583 1997Google Scholar
21Nagahama, D., Ohkubo, T., Mukai, T.Hono, K.: Characterization of nanocrystal dispersed Cu60Zr30Ti10 metallic glass. Mater. Trans. 46, 1264 2005CrossRefGoogle Scholar
22Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T.Inoue, A.: Is Cu60Ti10Zr30 a bulk glass-forming alloy? Appl. Phys. Lett. 82, 4041 2003CrossRefGoogle Scholar
23Freed, R.L.Sande, J.B. Vander: Study of the crystallization of two non-crystalline Cu-Zr alloys. J. Non-Cryst. Solids 27, 9 1978CrossRefGoogle Scholar
24Louzguine, D.V.Inoue, A.: Nanocrystallization of Cu-(Zr or Hf)-Ti metallic glasses. J. Mater. Res. 17, 2112 2002CrossRefGoogle Scholar
25Kasai, M., Saida, J., Matsushita, M., Osuna, T., Matsubara, E.Inoue, A.: Structure and crystallization of rapidly quenched Cu-(Zr or Hf)-Ti alloys containing nanocrystalline particles. J. Phys.: Condens. Matter 14, 13867 2002Google Scholar
26Zhang, W.Inoue, A.: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system. J. Mater. Res. 21, 234 2006CrossRefGoogle Scholar
27Dai, C-L., Guo, H., Shen, Y., Li, Y., Ma, E.Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 2006CrossRefGoogle Scholar
28Sung, D-S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H.Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Met. Mater. Int. 10, 575 2004CrossRefGoogle Scholar
29Zhang, Q., Zhang, W.Inoue, A.: Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater. Trans. 48, 629 2007CrossRefGoogle Scholar
30Louzguine-Luzgin, D.V., Xie, G., Zhang, W.Inoue, A.: Devitrification behavior and glass-forming ability of Cu-Zr-Ag alloys. Mater. Sci. Eng. 465, 146 2007CrossRefGoogle Scholar
31Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 2005CrossRefGoogle Scholar
32Kundig, A.A., Ohnuma, M., Ohkubo, T., Abe, T.Hono, K.: Glass formation and phase separation in the Ag-Cu-Zr system. Scripta Mater. 55, 449 2006CrossRefGoogle Scholar
33Louzguine, D.V.Inoue, A.: Nanoparticles with icosahedral symmetry in Cu-based bulk glass former induced by Pd addition. Scripta Mater. 48, 1325 2003CrossRefGoogle Scholar
34Louzguine, D.V., Yavari, A.R.Inoue, A.: Devitrification behaviour of Cu-Zr-Ti-Pd bulk glassy alloys. Philos. Mag. 83, 2989 2003CrossRefGoogle Scholar
35Louzguine-Luzgin, D.V., Inoue, A., Nagahama, D.Hono, K.: Composition and structure of Cu-based nanoicosahedral phase in Cu-Zr-Ti-Pd alloy. Appl. Phys. Lett. 87, 211918 2005CrossRefGoogle Scholar
36Louzguine, D.V.Inoue, A.: Gold as an alloying element promoting formation of a nanoicosahedral phase in a Cu-based alloy. J. Alloys Compd. 361, 153 2003CrossRefGoogle Scholar
37Louzguine, D.V.Inoue, A.: Effect of Ni on stabilization of the supercooled liquid and devitrification of Cu-Zr-Ti bulk glassy alloys. J. Non-Cryst. Solids 325, 187 2003CrossRefGoogle Scholar
38Venkataraman, S., Bartusch, B., Mickel, C., Kim, K.B., Das, J., Scudino, S., Stoica, M., Sordelet, D.J.Eckert, J.: Metallic glass formation in the Cu47Ti33Zr11Ni8Si1 alloy. Mater. Sci. Eng., A 444, 257 2007CrossRefGoogle Scholar
39Wang, H., Song, X.P., Yao, X.D., Zhang, H.F.Hu, Z.Q.: Crystallization behavior of (Cu60Zr30Ti10)99Sn1 bulk metallic glass. J. Mater. Sci. Technol. 21, 51 2005Google Scholar
40Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H.Inoue, A.: Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Philos. Mag. 87, 1845 2007CrossRefGoogle Scholar
41Setyawan, A.D., Kato, H., Saida, J.Inoue, A.: Origin of the effect of the gas atmosphere during mold-casting Zr65Al7.5Ni10Pd17.5 bulk glassy or nano-quasicrystal-forming alloy. Mater. Trans. 48, 1266 2007CrossRefGoogle Scholar
42Elliot, S.R.: Physics of Amorphous Materials Longman Group Harlow, UK 1990 20–31Google Scholar
43Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H.Inoue, A.: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 2006CrossRefGoogle Scholar
44Kolmogorov, A.N.: On the static theory of metal crystallization. Isz. Akad. Nauk. USSR Ser. Matem. 3, 355 1937Google Scholar
45Avrami, M.J.: Granulation, phase change, and microstructure: Kinetics of phase change. J. Chem. Phys. 9, 177 1941CrossRefGoogle Scholar
46Johnson, M.W.A.Mehl, K.F.: Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Mining. Met. Eng. 135, 416 1939Google Scholar
47Christian, J.W.: The Theory of Transformations in Metals and Alloys Pergamon Press Oxford, UK 1975 136Google Scholar
48Klotz, U.E., Liu, C., Uggowitzer, P.J.Löffler, J.F.: Experimental investigation of the Cu–Ti–Zr system at 800 °C. Intermetallics 15, 1666 2007CrossRefGoogle Scholar
49Arroyave, R., Eagar, T.W.Kaufman, L.: Thermodynamic assessment of the Cu–Ti–Zr system. J. Alloys Compd. 351, 158 2003CrossRefGoogle Scholar
50Louzguine, D.V.Inoue, A.: Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses. Appl. Phys. Lett. 79, 3410 2001CrossRefGoogle Scholar
51Louzguine-Luzgin, D.V., Inoue, A.Botta, W.J.: Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl. Phys. Lett. 88, 011911 2006CrossRefGoogle Scholar
52Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164 1944CrossRefGoogle Scholar
53Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431 1963CrossRefGoogle Scholar
54Inoue, A., Kim, Y.H.Masumoto, T.: A large tensile elongation induced by crystallization in an amorphous Al88Ni10Ce2 alloy. Mater. Trans., JIM 33, 487 1992CrossRefGoogle Scholar
55Zhong, Z.C., Jiang, X.Y.Greer, A.L.Micro structure and hardening of Al-based nanophase composites. Mater. Sci. Eng., A, 226–228, 531 1997CrossRefGoogle Scholar