Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T20:58:19.430Z Has data issue: false hasContentIssue false

Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys

Published online by Cambridge University Press:  26 August 2016

Yanwen Zhang*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Ke Jin
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Haizhou Xue
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
Chenyang Lu
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Raina J. Olsen
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Laurent K. Beland
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Mohammad W. Ullah
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Shijun Zhao
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Hongbin Bei
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Dilpuneet S. Aidhy
Affiliation:
Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071, USA
German D. Samolyuk
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Lumin Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Magdalena Caro
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Alfredo Caro
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
G. Malcolm Stocks
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Ben C. Larson
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Ian M. Robertson
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
Alfredo A. Correa
Affiliation:
Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
William J. Weber
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA; and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
*
a)Address all correspondence to this author. e-mail: zhangyl@ornl.gov
Get access

Abstract

Historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel set of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. The insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).CrossRefGoogle ScholarPubMed
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Beland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in nickel and Ni-based concentrated solid-solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle Scholar
Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).CrossRefGoogle ScholarPubMed
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).Google Scholar
Lu, C., Jin, K., Béland, L.K., Zhang, F., Yang, T., Qiao, L., Zhang, Y., Bei, H., Christen, H.M., Stoller, R.E., and Wang, L.: Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6, 19994 (2016).CrossRefGoogle ScholarPubMed
Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).Google Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 17581765 (2010).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698706 (2011).Google Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428441 (2014).CrossRefGoogle Scholar
Ye, X., Ma, M., Liu, W., Li, L., Zhong, M., Liu, Y., and Wu, Q.: Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding. Adv. Mater. Sci. Eng. 2011, 17 (2011).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 26282638 (2013).CrossRefGoogle Scholar
Wang, Y.P., Li, B.S., and Fu, H.Z.: Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11, 641644 (2009).CrossRefGoogle ScholarPubMed
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).CrossRefGoogle Scholar
Tsai, M.H.: Physical properties of high entropy alloys. Entropy 15, 53385345 (2013).Google Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).Google Scholar
Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131140 (2014).CrossRefGoogle Scholar
Kudrnovský, J., Drchal, V., and Bruno, P.: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 224422 (2008).CrossRefGoogle Scholar
Troparevsky, M.C., Morris, J.R., Daene, M., Wang, Y., Lupini, A.R., and Stocks, G.M.: Beyond atomic sizes and Hume–Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 23502363 (2015).Google Scholar
Tamm, A., Aabloo, A., Klintenberg, M., Stocks, G.M., and Caro, A.: Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater. 99, 307312, (2015).Google Scholar
Faulkner, J. and Stocks, G.M.: Calculating properties with the coherent-potential approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 21, 3222 (1980).CrossRefGoogle Scholar
Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).Google Scholar
Butler, W.H. and Stocks, G.M.: Mass and lifetime enhancement due to disorder on Ag c Pd1−c alloys. Phys. Rev. Lett. 48, 5558 (1982).Google Scholar
Butler, W.H. and Stocks, G.M.: Calculated electrical-conductivity and thermopower of silver–palladium alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 42174233 (1984).Google Scholar
Hoover, W.G.: Computational Statistical Mechanics (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1991).Google Scholar
Caro, M., Béland, L.K., Samolyuk, G.D., Stoller, R.E., and Caro, A.: Lattice thermal conductivity of multi-component alloys. J. Alloys Compd. 648, 408413 (2015).CrossRefGoogle Scholar
Hoover, W.G.: Computational Statistical Mechanics (Elsevier, Amsterdam, 1981).Google Scholar
Bonny, G., Nicolas, C., and Dmitry, T.: Interatomic potential for studying aging under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).CrossRefGoogle Scholar
Allen, T.R., Cole, J.I., Gan, J., Was, G.S., Dropek, R., and Kenik, E.A.: Swelling and radiation-induced segregation in austentic alloys. J. Nucl. Mater. 342, 90100 (2005).Google Scholar
Caro, A., Correa, A., Tamm, A., Samolyuk, G.D., and Stocks, G.M.: Adequacy of damped dynamics to represent the electron–phonon interaction in solids. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 144309 (2015).CrossRefGoogle Scholar
Samolyuk, G.D., Béland, L.K., Stocks, G.M., and Stoller, R.E.: Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling. J. Phys.: Condens. Matter 28, 7550175511 (2016).Google ScholarPubMed
Correa, A.A., Kohanoff, J., Artacho, E., Sanchez-Portal, D., and Caro, A.: Erratum: Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Phys. Rev. Lett. 109, 213201 (2012).Google Scholar
Schleife, A., Draeger, E.W., Kanai, Y., and Correa, A.A.: Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn–Sham equations in large-scale simulations. J. Chem. Phys. 137, 22A546 (2012).Google Scholar
Zhao, S., Stocks, G.M., and Zhang, Y.: The formation and migration properties of point defects in Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2 concentrated solid-solution alloys from atomistic simulations. arXiv preprint: 1607.04667 (2016).Google Scholar
Jin, K., Bei, H., and Zhang, Y.: Ion irradiation induced defect evolution in Ni and Ni-containing fcc equiatomic binary alloys. J. Nucl. Mater. 471, 193199 (2016).Google Scholar
Olsen, R.J., Jin, K., Lu, C., Beland, L.K., Wang, L., Bei, H., Specht, E.D., and Larson, B.C.: Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse x-ray scattering and electron microscopy. J. Nucl. Mater. 469, 153161 (2016).CrossRefGoogle Scholar
Liu, B., Yuan, F., Jin, K., Zhang, Y., and Weber, W.J.: Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo. J. Phys.: Condens. Matter 27(43), 435006 (2015).Google ScholarPubMed
Béland, L.K., Samolyuk, G.D., and Stoller, R.E.: Differences in the accumulation of ion-beam damage in Ni and NiFe explained by atomistic simulations. J. Alloys Compd. 662, 415420 (2016).Google Scholar
Aidhy, D.S., Lu, C., Jin, K., Bei, H., Zhang, Y., Wang, L., and Weber, W.J.: Point defect evolution in Ni, NiFe, and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 6976 (2015).Google Scholar
Beland, L.K., Lu, C., Osetsky, Y.N., Samolyuk, G.D., Caro, A., Wang, L., and Stoller, R.E.: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).CrossRefGoogle Scholar
Aidhy, D.S., Lu, C., Jin, K., Bei, H., Zhang, Y., Wang, L., and Weber, W.J.: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism. Scr. Mater. 114, 137141 (2016).Google Scholar
Ullah, M.W., Aidhy, D.S., Zhang, Y., and Weber, W.J.: Damage accumulation in ion-irradiated Ni-based concentrated solid solution alloys. Acta Mater. 109, 1722 (2016).Google Scholar
Purja Pun, G.P., Yamakov, V., and Mishin, Y.: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model. Simul. Mater. Sci. Eng. 23, 065006 (2015).Google Scholar
Bonny, G., Pasianot, R.C., and Malerba, L.: Fe–Ni many-body potential for metallurgical applications. Model. Simul. Mater. Sci. Eng. 17, 025010 (2009).Google Scholar
Silcox, J. and Hirsch, P.B.: Direct observations of defects in quenched gold. Philos. Mag. 4, 7289 (1959).CrossRefGoogle Scholar
Osetsky, Y.N. and Bacon, D.J.: Defect cluster formation in displacement cascades in copper. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 8590 (2001).CrossRefGoogle Scholar
de Jong, M. and Koehler, J.S.: Annealing of pure gold quenched from above 800 °C. Phys. Rev. 129, 4961 (1963).CrossRefGoogle Scholar
Johnson, R.A.: Calculations of small vacancy and interstitial clusters for an fcc lattice. Physical Review 152(2), 629 (1966).Google Scholar
Schüle, W., Scholz, R., and Panzarasa, A.: Properties of vacancies and divacancies in FCC metals (Commission of the European Communities, ECSC-EEC-EAEC, Brussels-Luxembourg, Belgium, 1979); p. 21, ISBN 92-825-0781-5 Catalogue number: CD-NA-79-001-EN-C.Google Scholar
Scholz, R. and Schule, W.: Properties of single vacancies and of divacancies in copper. Phys. Lett. A 64, 340341 (1977).CrossRefGoogle Scholar
Lam, N.Q., Doan, N.V., and Dagens, L.: Multiple defects in copper and silver. J. Phys. F: Met. Phys. 15, 799808 (1985).CrossRefGoogle Scholar
Osetsky, Y.N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.: Stability and mobility of defect clusters and dislocation loops in metals. J. Nucl. Mater. 276, 6577 (2000).CrossRefGoogle Scholar
Martínez, E. and Uberuaga, B.P.: Mobility and coalescence of stacking fault tetrahedra in Cu. Sci. Rep. 5, 9084 (2015) DOI:10.1038/srep09084.CrossRefGoogle ScholarPubMed
Béland, L.K., Brommer, P., El-Mellouhi, F., Joly, J-F., and Mousseau, N.: Kinetic activation relaxation technique. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 4 (2011).Google ScholarPubMed
Mousseau, N., Béland, L.K., Rommer, P.B., El-Mellouhi, F., Joly, J-F., N'Tsouaglo, G.K., Restrepo, O., and Trochet, M.: Following atomistic kinetics on experimental timescales with the kinetic activation–relaxation technique. Comput. Mater. Sci. 100, 111123 (2015).Google Scholar
Brommer, P., Beland, L.K., Joly, J-F., and Mousseau, N.: Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 134109 (2014).CrossRefGoogle Scholar
Béland, L.K., Osetsky, Y.N., Stoller, R.E., and Xu, H.: Slow relaxation of cascade-induced defects in Fe. Phys. Rev. B 91, 054108 (2015).CrossRefGoogle Scholar
Béland, L.K., Osetsky, Y.N., Stoller, R.E., and Xu, H.: Kinetic activation–relaxation technique and self-evolving atomistic kinetic Monte Carlo: Comparison of on-the-fly kinetic Monte Carlo algorithms. Comput. Mater. Sci. 100, 124134 (2015).Google Scholar
Béland, L.K., Osetsky, Y.N., Stoller, R.E., and Xu, H.: Interstitial loop transformations in FeCr. J. Alloys Compd. 640, 219225 (2015).Google Scholar
Granberg, F., Nordlundl, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle ScholarPubMed
Zhang, Y., Crespillo, M.L., Xue, H., Jin, K., Chen, C.H., Fontana, C.L., Graham, J.T., and Weber, W.J.: New ion beam materials laboratory for materials modification and irradiation effects research. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 1930 (2014).Google Scholar