Skip to main content Accessibility help

Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys

  • Yanwen Zhang (a1), Ke Jin (a1), Haizhou Xue (a2), Chenyang Lu (a3), Raina J. Olsen (a1), Laurent K. Beland (a1), Mohammad W. Ullah (a1), Shijun Zhao (a1), Hongbin Bei (a1), Dilpuneet S. Aidhy (a4), German D. Samolyuk (a1), Lumin Wang (a3), Magdalena Caro (a5), Alfredo Caro (a5), G. Malcolm Stocks (a1), Ben C. Larson (a1), Ian M. Robertson (a6), Alfredo A. Correa (a7) and William J. Weber (a8)...


Historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel set of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. The insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).
2. Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Beland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in nickel and Ni-based concentrated solid-solution alloys. Nat. Commun. 6, 8736 (2015).
3. Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).
4. Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).
5. Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).
6. Lu, C., Jin, K., Béland, L.K., Zhang, F., Yang, T., Qiao, L., Zhang, Y., Bei, H., Christen, H.M., Stoller, R.E., and Wang, L.: Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6, 19994 (2016).
7. Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).
8. Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 17581765 (2010).
9. Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698706 (2011).
10. Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428441 (2014).
11. Ye, X., Ma, M., Liu, W., Li, L., Zhong, M., Liu, Y., and Wu, Q.: Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding. Adv. Mater. Sci. Eng. 2011, 17 (2011).
12. Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 26282638 (2013).
13. Wang, Y.P., Li, B.S., and Fu, H.Z.: Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11, 641644 (2009).
14. Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).
15. Tsai, M.H.: Physical properties of high entropy alloys. Entropy 15, 53385345 (2013).
16. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).
17. Wu, Z., Bei, H., Otto, F., Pharr, G.M., and George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131140 (2014).
18. Kudrnovský, J., Drchal, V., and Bruno, P.: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 224422 (2008).
19. Troparevsky, M.C., Morris, J.R., Daene, M., Wang, Y., Lupini, A.R., and Stocks, G.M.: Beyond atomic sizes and Hume–Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 23502363 (2015).
20. Tamm, A., Aabloo, A., Klintenberg, M., Stocks, G.M., and Caro, A.: Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater. 99, 307312, (2015).
21. Faulkner, J. and Stocks, G.M.: Calculating properties with the coherent-potential approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 21, 3222 (1980).
22. Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).
23. Butler, W.H. and Stocks, G.M.: Mass and lifetime enhancement due to disorder on Ag c Pd1−c alloys. Phys. Rev. Lett. 48, 5558 (1982).
24. Butler, W.H. and Stocks, G.M.: Calculated electrical-conductivity and thermopower of silver–palladium alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 42174233 (1984).
25. Hoover, W.G.: Computational Statistical Mechanics (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1991).
26. Caro, M., Béland, L.K., Samolyuk, G.D., Stoller, R.E., and Caro, A.: Lattice thermal conductivity of multi-component alloys. J. Alloys Compd. 648, 408413 (2015).
27. Hoover, W.G.: Computational Statistical Mechanics (Elsevier, Amsterdam, 1981).
28. Bonny, G., Nicolas, C., and Dmitry, T.: Interatomic potential for studying aging under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).
29. Allen, T.R., Cole, J.I., Gan, J., Was, G.S., Dropek, R., and Kenik, E.A.: Swelling and radiation-induced segregation in austentic alloys. J. Nucl. Mater. 342, 90100 (2005).
30. Caro, A., Correa, A., Tamm, A., Samolyuk, G.D., and Stocks, G.M.: Adequacy of damped dynamics to represent the electron–phonon interaction in solids. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 144309 (2015).
31. Samolyuk, G.D., Béland, L.K., Stocks, G.M., and Stoller, R.E.: Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling. J. Phys.: Condens. Matter 28, 7550175511 (2016).
32. Correa, A.A., Kohanoff, J., Artacho, E., Sanchez-Portal, D., and Caro, A.: Erratum: Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Phys. Rev. Lett. 109, 213201 (2012).
33. Schleife, A., Draeger, E.W., Kanai, Y., and Correa, A.A.: Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn–Sham equations in large-scale simulations. J. Chem. Phys. 137, 22A546 (2012).
34. Zhao, S., Stocks, G.M., and Zhang, Y.: The formation and migration properties of point defects in Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2 concentrated solid-solution alloys from atomistic simulations. arXiv preprint: 1607.04667 (2016).
35. Jin, K., Bei, H., and Zhang, Y.: Ion irradiation induced defect evolution in Ni and Ni-containing fcc equiatomic binary alloys. J. Nucl. Mater. 471, 193199 (2016).
36. Olsen, R.J., Jin, K., Lu, C., Beland, L.K., Wang, L., Bei, H., Specht, E.D., and Larson, B.C.: Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse x-ray scattering and electron microscopy. J. Nucl. Mater. 469, 153161 (2016).
37. Liu, B., Yuan, F., Jin, K., Zhang, Y., and Weber, W.J.: Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo. J. Phys.: Condens. Matter 27(43), 435006 (2015).
38. Béland, L.K., Samolyuk, G.D., and Stoller, R.E.: Differences in the accumulation of ion-beam damage in Ni and NiFe explained by atomistic simulations. J. Alloys Compd. 662, 415420 (2016).
39. Aidhy, D.S., Lu, C., Jin, K., Bei, H., Zhang, Y., Wang, L., and Weber, W.J.: Point defect evolution in Ni, NiFe, and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 6976 (2015).
40. Beland, L.K., Lu, C., Osetsky, Y.N., Samolyuk, G.D., Caro, A., Wang, L., and Stoller, R.E.: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).
41. Aidhy, D.S., Lu, C., Jin, K., Bei, H., Zhang, Y., Wang, L., and Weber, W.J.: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism. Scr. Mater. 114, 137141 (2016).
42. Ullah, M.W., Aidhy, D.S., Zhang, Y., and Weber, W.J.: Damage accumulation in ion-irradiated Ni-based concentrated solid solution alloys. Acta Mater. 109, 1722 (2016).
43. Purja Pun, G.P., Yamakov, V., and Mishin, Y.: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model. Simul. Mater. Sci. Eng. 23, 065006 (2015).
44. Bonny, G., Pasianot, R.C., and Malerba, L.: Fe–Ni many-body potential for metallurgical applications. Model. Simul. Mater. Sci. Eng. 17, 025010 (2009).
45. Silcox, J. and Hirsch, P.B.: Direct observations of defects in quenched gold. Philos. Mag. 4, 7289 (1959).
46. Osetsky, Y.N. and Bacon, D.J.: Defect cluster formation in displacement cascades in copper. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 8590 (2001).
47. de Jong, M. and Koehler, J.S.: Annealing of pure gold quenched from above 800 °C. Phys. Rev. 129, 4961 (1963).
48. Johnson, R.A.: Calculations of small vacancy and interstitial clusters for an fcc lattice. Physical Review 152(2), 629 (1966).
49. Schüle, W., Scholz, R., and Panzarasa, A.: Properties of vacancies and divacancies in FCC metals (Commission of the European Communities, ECSC-EEC-EAEC, Brussels-Luxembourg, Belgium, 1979); p. 21, ISBN 92-825-0781-5 Catalogue number: CD-NA-79-001-EN-C.
50. Scholz, R. and Schule, W.: Properties of single vacancies and of divacancies in copper. Phys. Lett. A 64, 340341 (1977).
51. Lam, N.Q., Doan, N.V., and Dagens, L.: Multiple defects in copper and silver. J. Phys. F: Met. Phys. 15, 799808 (1985).
52. Osetsky, Y.N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.: Stability and mobility of defect clusters and dislocation loops in metals. J. Nucl. Mater. 276, 6577 (2000).
53. Martínez, E. and Uberuaga, B.P.: Mobility and coalescence of stacking fault tetrahedra in Cu. Sci. Rep. 5, 9084 (2015) DOI:10.1038/srep09084.
54. Béland, L.K., Brommer, P., El-Mellouhi, F., Joly, J-F., and Mousseau, N.: Kinetic activation relaxation technique. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 4 (2011).
55. Mousseau, N., Béland, L.K., Rommer, P.B., El-Mellouhi, F., Joly, J-F., N'Tsouaglo, G.K., Restrepo, O., and Trochet, M.: Following atomistic kinetics on experimental timescales with the kinetic activation–relaxation technique. Comput. Mater. Sci. 100, 111123 (2015).
56. Brommer, P., Beland, L.K., Joly, J-F., and Mousseau, N.: Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 134109 (2014).
57. Béland, L.K., Osetsky, Y.N., Stoller, R.E., and Xu, H.: Slow relaxation of cascade-induced defects in Fe. Phys. Rev. B 91, 054108 (2015).
58. Béland, L.K., Osetsky, Y.N., Stoller, R.E., and Xu, H.: Kinetic activation–relaxation technique and self-evolving atomistic kinetic Monte Carlo: Comparison of on-the-fly kinetic Monte Carlo algorithms. Comput. Mater. Sci. 100, 124134 (2015).
59. Béland, L.K., Osetsky, Y.N., Stoller, R.E., and Xu, H.: Interstitial loop transformations in FeCr. J. Alloys Compd. 640, 219225 (2015).
60. Granberg, F., Nordlundl, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).
61. Zhang, Y., Crespillo, M.L., Xue, H., Jin, K., Chen, C.H., Fontana, C.L., Graham, J.T., and Weber, W.J.: New ion beam materials laboratory for materials modification and irradiation effects research. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 1930 (2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed