Skip to main content Accessibility help

Influence of casting temperature on microstructures and mechanical properties of Cu50Zr45.5Ti2.5Y2 metallic glass prepared using copper mold casting

  • Zhengwang Zhu (a1), Haifeng Zhang (a2), Hao Wang (a3), Bingzhe Ding, Zhuang-Qi Hu (a2) and Han Huang (a4)...


The influence of casting temperatures on microstructures and mechanical properties of rapidly solidified Cu50Zr45.5Ti2.5Y2 alloy was investigated. With increasing casting temperatures, the amount of the crystalline phase decreases. At a high casting temperature, i.e., 1723 K, glass-forming ability (GFA) of the present alloy is enhanced. The results imply that adjusting the casting temperature could be used for designing the microstructures of bulk metallic glass matrix composite. Nanoindentation tests indicated that CuZr phases are slightly softer and can accommodate more plastic deformation than the amorphous matrix. Compression tests confirmed that this kind of second phase (CuZr) precipitated under lower casting temperatures helps to initiate multiple shear bands, resulting in a great improvement in mechanical properties of the samples. Our work indicates that casting temperatures have a great influence on GFA, microstructures, and mechanical properties of the rapidly solidified alloy, therefore controlling the casting temperature is crucial to the production of BMGs.


Corresponding author

a) Address all correspondence to this


Hide All
1.Askeland, D.R. and Phule, P.P.: The Science and Engineering of Materials, 4th ed. (Tsinghua University Press, Beijing, China, 2004), pp. 5, 27.
2.Eskin, G.I.: Ultrasonic Treatment of Light Alloy Melts (CRC Press, Boca Raton, FL, 1998).
3.Manov, V., Popel, P., Brook-Levinson, E., Molokanov, V., Calvo-Dahlborg, M., U Dahlborg, Sidorov, V., Son, L., and Tarakanov, Y.: Influence of the treatment of melt on the properties of amorphous materials: Ribbons, bulks and glass coated microwires. Mater. Sci. Eng., A 304306, 54 (2001).
4.Popel, P.S., Chikova, O.A., and Matveev, V.M.: Metastable colloidal states of liquid metallic solutions. High Temp. Mater. Processes 14, 219 (1995).
5.Popel, P.S., Calvo-Dahlborg, M., and Dahlborg, U.: Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy. J. Non-Cryst. Solids 353, 3243 (2007).
6.Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).
7.Byrne, C.J. and Eldrup, M.: Materials science: Bulk metallic glasses. Science 321, 502 (2008).
8.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).
9.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).
10.Li, Y., Poon, S.J., Shiflet, G.J., Xu, J., Kim, D.H., and Löffler, J.F.: Formation of bulk metallic glasses and their composites. MRS Bull. 32, 624 (2007).
11. H. Choi-Yim and Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).
12.Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75 Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).
13.Shen, J., Huang, Y.J., and Sun, J.F.: Plasticity of a TiCu-based bulk metallic glass: Effect of cooling rate. J. Mater. Res. 22, 3067 (2007).
14.Zhu, Z.W., Zheng, S.J., Zhang, H.F., Ding, B.Z., Hu, Z.Q., Liaw, P.K., Wang, Y.D., and Ren, Y.: Plasticity of bulk metallic glasses improved by controlling the solidification condition. J. Mater. Res. 23, 941 (2008).
15.Zhu, Z.W., Zhang, H.F., Wang, H., Ding, B.Z., and Hu, Z.Q.: The influence of casting temperature on the thermal stability of Cuand Zr-based MGs: Theoretic analysis and experiments. J. Mater. Res. 23, 2714 (2008).
16.Inoue, A., Zhang, W., and Saida, J.: Synthesis and fundamental properties of Cu-based bulk glassy alloys in binary and multicomponent systems. Mater. Trans. 45, 1153 (2004).
17.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: Thermal and mechanical properties of Cu-based Cu–Zr–Ti bulk glassy alloys. Mater. Trans. 42, 1149 (2001).
18.Zhang, Q.S., Zhang, W., Xie, G.Q., Nakayama, K.S., Kimura, H., and Inoue, A.: Formation of bulk metallic glass in situ composites in Cu50Zr45Ti5 alloy. J. Alloys Compd. 431, 236 (2007).
19.Zhang, Q., Zhang, H., Zhu, Z., and Hu, Z.: Formation of high strength in-situ bulk metallic glass composite with enhanced plasticity in Cu50Zr47.5Ti2.5 alloy. Mater. Trans. 46, 730 (2005).
20.Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Cheung, T.L., and Shek, C.H.: Plasticity-improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).
21.Jiang, F., Zhang, Z.B., He, L., Sun, J., Zhang, H., and Zhang, Z.F.: The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites. J. Mater. Res. 21, 8 (2006).
22.Pauly, S., Das, J., Duhamel, C., and Eckert, J.: Martensite formation in a ductile Cu47.5Zr47.5Al5 bulk metallic glass composite. Adv. Eng. Mater. 9, 487 (2007).
23.Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S., and Eckert, J.: Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans. 47, 2606 (2006).
24.Carvalho, E.M. and Harris, I.R.: Constitutional and structural studies of the intermetallic phase, ZrCu. J. Mater. Sci. 15, 1224 (1980).
25.Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., and Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scr. Mater. 54, 1145 (2006).
26.Kim, K.B., Das, J., Venkataraman, S., Yi, S., and Eckert, J.: Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5 Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908 (2006).
27.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).
28.Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).
29.Kelton, K.F.: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75 (1991).
30.Hoyer, W. and Jodicke, R.: Short-range and medium-range order in liquid Au–Ge alloys. J. Non-Cryst. Solids 192–193, 102 (1995).
31.Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., and Robinson, D.S.: First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).
32. H. Jónsson and Andersen, H.C.: Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295 (1988).
33.Wang, W.H., Lewandowski, J.J., and Greer, A.L.: Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic. J. Mater. Res. 20, 2307 (2005).
34.Wang, H.R., Ye, Y.F., Shi, Z.Q., Teng, X.Y., and Min, G.H.: Crystallization processes in amorphous Zr54Cu46 alloy. J. Non-Cryst. Solids 311, 36 (2002).
35.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystaltoughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).
36.Aboki, T.A.M., Brisset, F., Souron, J.P., Dezellus, A., and Plaindoux, P.: Microstructure studies of Zr65Cu17.5Al7.5Ni10 and Zr65Cu15Al10Ni10 glass forming alloys: Phase morphologies and undercooled melt solidification. Intermetallics 16, 615 (2008).
37.Tournier, R.F.: Presence of intrinsic growth nuclei in overheated and undercooled liquid elements. Physica B 392, 79 (2007).


Related content

Powered by UNSILO

Influence of casting temperature on microstructures and mechanical properties of Cu50Zr45.5Ti2.5Y2 metallic glass prepared using copper mold casting

  • Zhengwang Zhu (a1), Haifeng Zhang (a2), Hao Wang (a3), Bingzhe Ding, Zhuang-Qi Hu (a2) and Han Huang (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.