Skip to main content Accessibility help

Influence of boron nitride on reinforcement to improve high temperature oxidation resistance of titanium

  • Jose D. Avila (a1) and Amit Bandyopadhyay (a1)


Influence of boron nitride (BN) addition in commercially pure titanium (Cp-Ti) was characterized for their microstructural variation, hardness, and oxidation kinetics. Feedstock powders, Cp-Ti with 3 wt% BN (3BN) and 6 wt% BN (6BN), were prepared by roller mill followed by additive manufacturing using laser engineered net shaping (LENS™). Rate of oxidation was measured from thermogravimetric analysis (TGA) at 1000 °C for 50 h. Average instantaneous parabolic constants (kp) for Cp-Ti, 3BN, and 6BN were 41.2 ± 12.0, 28.6 ± 2.8, and 18.2 ± 9.2 mg2/(cm4 h), respectively. Cp-Ti displayed acicular α-Ti microstructure. After TGA, large equiaxed grains along with TiO2 formation at the grain boundaries were observed, which increased the hardness. With BN addition, plate-like TiN and needle-like TiB secondary phases were also observed. Hardness for Cp-Ti, 3BN, and 6BN were 256.9 ± 7.7, 424.0 ± 33.6, and 548.3 ± 49.7 HV0.2, respectively. Overall, a small addition of BN was effective in improving the oxidation resistance of Cp-Ti.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to



Hide All
1.Dai, J., Zhu, J., Chen, C., and Weng, F.: High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 685, 784798 (2016).
2.Huda, Z. and Edi, P.: Materials selection in design of structures and engines of supersonic aircrafts: A review. Mater. Des. 46, 552560 (2013).
3.Zhou, Y., Zhang, Q.Y., Liu, J.Q., Cui, X.H., Mo, J.G., and Wang, S.Q.: Wear characteristics of a thermally oxidized and vacuum diffusion heat treated coating on Ti–6Al–4V alloy. Wear 344, 921 (2015).
4.Wang, S., Liao, Z., Liu, Y., and Liu, W.: Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy. Surf. Coating. Technol. 240, 470477 (2014).
5.Peters, M., Kumpfert, J., Ward, C.H., and Leyens, C.: Titanium and Titanium Alloys (Wiley-VCH, Weinheim, 2003).
6.Aniołek, K.: The influence of thermal oxidation parameters on the growth of oxide layers on titanium. Vacuum 144, 94100 (2017).10.1016/j.vacuum.2017.07.023
7.Kanjer, A., Lavisse, L., Optasanu, V., Berger, P., Gorny, C., Peyre, P., Herbst, F., Heintz, O., Geoffroy, N., Montesin, T., and Marco de Lucas, M.C.: Effect of laser shock peening on the high temperature oxidation resistance of titanium. Surf. Coating. Technol. 326, 146155 (2017).
8.Kofstad, P., Hauffe, K., Kjöllesdal, H., Siekevitz, P., Ernster, L., and Diczfalusy, E.: Investigation on the oxidation mechanism of titanium. Acta Chem. Scand. 12, 239266 (1958).
9.Das, D.K. and Trivedi, S.P.: Microstructure of diffusion aluminide coatings on Ti-base alloy IMI-834 and their cyclic oxidation behaviour at 650 °C. Mater. Sci. Eng., A 367, 225233 (2004).
10.Ebach-Stahl, A., Eilers, C., Laska, N., and Braun, R.: Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700 °C in air. Surf. Coat. Technol. 223, 2431 (2013).
11.Lal, A.K., Sinha, S.K., Barhai, P.K., Nair, K.G.M., Kalavathy, S., and Kothari, D.C.: Effect of 60 keV nitrogen ion implantation on oxidation resistance of IMI 834 titanium alloy. Surf. Coating. Technol. 203, 26052607 (2009).
12.Raceanu, L., Optasanu, V., Montesin, T., Montay, G., and Francois, M.: Shot-peening of pre-oxidized plates of zirconium: Influence of residual stress on oxidation. Oxid. Met. 79, 135145 (2013).
13.Optasanu, V., Jacquinot, P., and Montesin, T.: Influence of the residual stresses induced by shot-peening on the oxidation of Zr plates. Adv. Mater. Res. 996, 912917 (2014).
14.Gualtieri, T. and Bandyopadhyay, A.: Additive manufacturing of compositionally gradient metal-ceramic structures: Stainless steel to vanadium carbide. Mater. Des. 139, 419428 (2017).10.1016/j.matdes.2017.11.007
15.Gualtieri, T. and Bandyopadhyay, A.: Niobium carbide compostie coatings on SS304 using laser engineered net shaping (LENS™). Mater. Lett. 189, 8992 (2017).
16.Stenberg, K., Dittrick, S., Bose, S., and Bandyopadhyay, A.: Influence of simultaneous addition of carbon nanotubes and calcium phosphate on wear resistance of 3D Printed Ti6Al4V. J. Mater. Res. 33, 20772086 (2018).
17.Sahasrabudhe, H. and Bandyopadhyay, A.: Additive manufacturing of reactive in situ Zr based ultra-high temperature ceramic composites. J. Miner. Met. Mater. Soc. 68, 822830 (2016).
18.Hu, Y., Ning, F., Wang, H., Cong, W., and Zhao, B.: Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance. Opt. Laser Technol. 99, 174183 (2018).
19.Zadra, M. and Girardini, L.: High-performance, low-cost titanium metal matrix composites. Mater. Sci. Eng., A 608, 155163 (2014).10.1016/j.msea.2014.04.066
20.Ding, Z.H., Ding, Z.H., Yao, B., Qiu, L.X., Bai, S.Z., Guo, X.Y., Xue, Y.F., Wang, W.R., Zhou, X.D., and Su, W.H.: Formation of titanium nitride by mechanical milling and isothermal annealing of titanium and boron nitride. J. Alloys Compd. 391, 7781 (2005).
21.Okamoto, H. and Baker, H.: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, OH, 1992).
22.Barin, I. and Knacke, O.: Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin Heidelberg, 1973).
23.Panda, K. and Ravi Chandran, K.: Synthesis of ductile titanium–titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties. Metall. Mater. Trans. A 34, 13711385 (2003).10.1007/s11661-003-0249-z
24.Bhuiyan, M.M.H., Li, L.H., Wang, J., Hodgson, P., and Chen, Y.: Interfacial reactions between titanium and boron nitride nanotubes. Scr. Mater. 127, 108112 (2017).
25.Ceramics, M., Gordienko, S.P., and Evtushok, T.M.: Reaction of titanium with boron nitride under self-propagating high-temperature synthesis conditions. Powder Metall. Met. Ceram. 40, 5860 (2001).
26.Chandran, K.S.R. and Panda, K.B.: Titanium composites with TiB whiskers. Adv. Mater. Process. 160, 5962 (2002).
27.Heer, B., Sahasrabudhe, H., Khanra, A.K., and Bandyopadhyay, A.: Boron nitride-reinforced SS316 composite: Influence of laser processing parameters on microstructure and wear resistance composites. J. Mater. Sci. 52, 1082910839 (2017).
28.Zhang, Y., Sahasrabudhe, H., and Bandyopadhyay, A.: Additive manufacturing of Ti–Si–N ceramic coatings on titanium. Appl. Surf. Sci. 346, 428437 (2015).
29.Albina, D.O.: Theory and Experience on Corrosion of Waterwall and Superheater Tubes of Was-to-Energy Facilities (Columbia University, New York, 2005).
30.Roberge, P.R.: Handbook of Corrosion Engineering (McGraw-Hill, New York, 2000).
31.Pérez, P., González-Carrasco, J.L., and Adeva, P.: Influence of powder particle size on the oxidation behavior of a PM Ni3Al alloy. Oxid. Met. 49, 485507 (1998).
32.Brumm, M.W. and Grabke, H.J.: The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys. Corros. Sci. 33, 16771690 (1992).
33.Binnewies, M. and Milke, E.: Thermochemical Data of Elements and Compounds (Wiley-VCH Verlag GmbH, Weinheim, New York, 2002).
34.Sahasrabudhe, H., Harrison, R., Carpenter, C., and Bandyopadhyay, A.: Stainless steel to titanium bimetallic structure using LENS. Addit. Manuf. 5, 18 (2015).
35.Balla, V.K., Xue, W., Bose, S., and Bandyopadhyay, A.: Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomater. 4, 697706 (2008).
36.Das, M., Bhattacharya, K., Dittrick, S.A., Mandal, C., Balla, V.K., Sampath Kumar, T.S., Bandyopadhyay, A., and Manna, I.: In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility. J. Mech. Behav. Biomed. Mater. 29, 259271 (2014).
37.Chikarakara, E., Naher, S., and Brabazon, D.: High speed laser surface modification of Ti–6Al–4V. Surf. Coating. Technol. 206, 32233229 (2012).
38.Sahasrabudhe, H., Soderlind, J., and Bandyopadhyay, A.: Laser processing of in situ TiN/Ti composite coating on titanium. J. Mech. Behav. Biomed. Mater. 53, 239249 (2016).
39.Xiang, W., Xuliang, M., Xinlin, L., Lihua, D., and Mingjia, W.: Effect of boron addition on microstructure and mechanical properties of TiC/Ti6Al4V composites. Mater. Des. 36, 4146 (2012).
40.Matache, G., Stefanescu, D.M., Puscasu, C., and Alexandrescu, E.: Dendritic segregation and arm spacing in directionally solidified CMSX-4 superalloy. Int. J. Cast Met. Res. 29, 303316 (2016).
41.Attar, H., Ehtemam-Haghighi, S., Kent, D., Wu, X., and Dargusch, M.S.: Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater. Sci. Eng., A 705, 385393 (2017).
42.Das, M., Balla, V.K., Basu, D., Sampath Kumar, T.S., and Bandyopadhyay, A.: Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings. Scr. Mater. 66, 578581 (2012).
43.Feng, H., Zhou, Y., Jia, D., Meng, Q., and Rao, J.: Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Cryst. Growth Des. 6, 16261630 (2006).
44.Kooi, B., Pei, Y., and De Hosson, J.: The evolution of microstructure in a laser clad TiB–Ti composite coating. Acta Mater. 51, 831845 (2003).
45.Ravi Chandran, K., Panda, K., and Sahay, S.: TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. J. Miner. Met. Mater. Soc. 56, 4248 (2004).
46.Huang, L.J., Geng, L., Li, A.B., Yang, F.Y., and Peng, H.X.: In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scr. Mater. 60, 996999 (2009).
47.Saha, N.C. and Tompkins, H.G.: Titanium nitride oxidation spectroscopy study chemistry: An X-ray photoelectron. J. Appl. Phys. 72, 30723079 (1992).
48.Bermingham, M., McDonald, S., Dargusch, M., and StJohn, D.: Grain-refinement mechanisms in titanium alloys. J. Mater. Res. 23, 97104 (2007).
49.Bermingham, M.J., McDonald, S.D., Dargusch, M.S., and StJohn, D.H.: The mechanism of grain refinement of titanium by silicon. Scr. Mater. 58, 10501053 (2008).


Influence of boron nitride on reinforcement to improve high temperature oxidation resistance of titanium

  • Jose D. Avila (a1) and Amit Bandyopadhyay (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed