Skip to main content Accessibility help

Indium tin oxide nanowires as voltage self-stabilizing supercapacitor electrodes

  • Qiang Li (a1), Zuming Wang (a2), Yuantao Zhang (a2), Peng Hu (a2), Tao Wang (a3) and Feng Yun (a4)...


A supercapacitor electrode featured with a voltage self-stabilizing capability is demonstrated by growing indium tin oxide (ITO) nanowires on Ni foam. The ITO nanowires with a single crystal structure are prepared by using magnetron sputtering technique, and they can act as an active electrode material. Charging–discharging experiments are performed under different current densities, demonstrating a good rate capability. Using properly designing top and bottom double connection circuits, part of the electrode can be used as a resistance switch. An electrode that can function as a supercapacitor and a resistance switch is fabricated. Detailed characteristics confirm that the device not only exhibits high performance as a supercapacitor but also has good characteristics of resistance switching (RS). The specific capacitance is 956 F/g at the scanning rate of 10 mV/s, and the switching ratio as a bipolar resistance switch is as high as 102. The stabilization time of discharging voltage is nearly doubled longer than that without any RS function, revealing the potential application of our devices, which can be used as a supercapacitor with voltage self-stabilizing.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Chen, L.F., Zhang, X.D., Liang, H.W., Kong, M., Guan, Q.F., Chen, P., Wu, Z.Y., and Yu, S.H.: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6, 7092 (2012).
2.Lee, D., Kim, K.S., Yun, J.M., Yoon, S.Y., Mathur, S., Shin, H.C., and Kim, K.H.: Synergistic effects of dual nano-type electrode of NiCo-nanowire/NiMn-nanosheet for high-energy supercapacitors. J. Alloys Compd. 789, 119 (2019).
3.Kim, T., Jung, G., Yoo, S., Suh, K.S., and Ruoff, R.S.: Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7, 6899 (2013).
4.Yan, W., Kim, J.Y., Xing, W., Donavan, K.C., Ayvazian, T., and Penner, R.M.: Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem. Mater. 24, 2382 (2012).
5.Fu, Y., Cai, X., Wu, H., Lv, Z., Hou, S., Peng, M., Yu, X., and Zou, D.: Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713 (2012).
6.Meng, C., Liu, C., Chen, L., Hu, C., and Fan, S.: Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025 (2010).
7.Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., and Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484 (2015).
8.González, A., Goikolea, E., Andoni, J., and Mysyk, R.: Review on supercapacitors: Technologies and materials. Renewable Sustainable Energy Rev. 58, 1189 (2016).
9.Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, Berlin, 1999).
10.Jing, C., Liu, X., Liu, X., Jiang, D., Dong, B., Dong, F., Wang, J., Li, N., Lan, T., and Zhang, Y.: Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors. CrystEngComm 20, 7428 (2018).
11.Hu, C.C., Chang, K.H., Lin, M.C., and Wu, Y.T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690 (2006).
12.Jiang, Q., Kurra, N., Alhabeb, M., Gogotsi, Y., and Alshareef, H.N.: All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018).
13.Chen, Y.M., Cai, J.H., Huang, Y.S., Lee, K.Y., and Tsai, D.S.: Preparation and characterization of iridium dioxide carbon nanotube nanocomposites for supercapacitors. Nanotechnology 22, 115706 (2011).
14.Korkmaz, S., Tezel, F.M., and Kariper, İ.A.: Synthesis and characterization of GO/IrO2 thin film supercapacitor. J. Alloys Compd. 754, 14 (2018).
15.Fan, H., Niu, R., Duan, J., Liu, W., and Shen, W.: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475 (2016).
16.Long, C., Wei, T., Yan, J., Jiang, L., and Fan, Z.: Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano 7, 11325 (2013).
17.Zhu, S., Li, L., Liu, J., Wang, H., Wang, T., Zhang, Y., Zhang, L., Ruoff, R.S., and Dong, F.: Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high performance asymmetric supercapacitors. ACS Nano 12, 1033 (2018).
18.Huang, M., Zhao, X.L., Li, F., Zhang, L.L., and Zhang, Y.X.: Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J. Power Sources 277, 36 (2015).
19.Lin, Y.H., Wei, T.Y., Chien, H.C., and Lu, S.Y.: Manganese oxide/carbon aerogel composite: An outstanding supercapacitor electrode material. Adv. Energy Mater. 1, 901 (2011).
20.Rao, T.P., Kumar, A., Naik, V.M., and Naik, R.: Effect of carbon nanofibers on electrode performance of symmetric supercapacitors with composite α-MnO2 nanorods. J. Alloys Compd. 789, 518 (2019).
21.Li, S., Teng, F., Chen, M., Li, N., Hua, X., Wang, K., and Li, M.: Interesting electrochemical properties of novel three-dimensional Ag3PO4 tetrapods as a new super capacitor electrode material. Chem. Phys. Lett. 601, 59 (2014).
22.Wu, X., Han, Z., Zheng, X., Yao, S., Yang, X., and Zhai, T.: Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410 (2017).
23.Wu, X. and Yao, S.: Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy 42, 143 (2017).
24.Wang, Z., Wang, Y., Yue, X., Shi, G., Shang, M., Zhang, Y., Lv, Z., and Ao, G.: Misfit-layered cobaltite Ca3Co4O9+δ as a new electrode for supercapacitor with excellent cycling stability. J. Alloys Compd. 792, 357 (2019).
25.Xing, L., Dong, Y., Hu, F., Wu, X., and Umar, A.: Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 47, 5687 (2018).
26.Liu, B., Liu, B., Wang, X., Wu, X., Zhao, W., Xu, Z., Chen, D., and Shen, G.: Memristor-integrated voltage-stabilizing supercapacitor system. Adv. Mater. 26, 4999 (2014).
27.Zheng, Y., Yang, Y., Chen, S., and Yuan, Q.: Stretchable and wearable supercapacitors: Prospects and challenges. CrystEngComm 18, 4218 (2016).
28.Beck, A., Bednorz, J.G., Gerber, C., Rossel, C., and Widmer, D.: Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 (2000).
29.Yoon, J.H., Kim, K.M., Song, S.J., Seok, J.Y., Yoon, K.J., Kwon, D.E., Park, T.H., Kwon, Y.J., Shao, X., and Hwang, C.S.: Pt/Ta2O5/HfO2−x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27, 3811 (2015).
30.Wan, Q., Dattoli, E.N., Fung, W.Y., Guo, W., Chen, Y., Pan, X., and Lu, W.: High-performance transparent conducting oxide nanowires. Nano Lett. 6, 2909 (2006).
31.Hill, J.J., Banks, N., Haller, K., Orazem, M.E., and Ziegler, K.: An interfacial and bulk charge transport model for dye-sensitized solar cells based on photoanodes consisting of core–shell nanowire arrays. J. Am. Chem. Soc. 133, 18663 (2011).
32.Noh, J.H., Han, H.S., Lee, S., Kim, J.Y., Hong, K.S., Han, G.S., Shin, H., and Jung, H.S.: Nanowire-based three-dimensional transparent conducting oxide electrodes for extremely fast charge collection. Adv. Energy Mater. 1, 829 (2011).
33.Qin, F., Tong, J., Luo, B., Jiang, F., Liu, T., Jiang, Y., Xu, Z., Mao, L., Meng, W., Xiong, S., Li, Z., Li, L., and Zhou, Y.: Indium tin oxide (ITO) free, top-illuminated, flexible perovskite solar cells. J. Mater. Chem. A 4, 14017 (2016).
34.Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., and Newton, R.R.: Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76, 1425 (2000).
35.Li, Q., Feng, L., Wang, S., Li, Y.F., and Yun, F.: Controlled synthesis of polystyrene-assisted tin-doped indium oxide nanowire networks. J. Mater. Res. 32, 1 (2017).
36.Li, Q., Zhang, Y., Feng, L., Wang, Z., Wang, T., and Yun, F.: Investigation of the influence of growth parameters on self-catalyzed ITO nanowires by high RF-power sputtering. Nanotechnology 29, 165708 (2018).
37.Li, Q., Gong, Z., Wang, S., Zhang, Y., and Yun, F.: Bipolar resistive switching behaviors of ITO nanowire networks. AIP Adv. 6, 025222 (2016).
38.Fung, M.K., Sun, Y.C., Ng, A., Ng, A.M.C., Djurišić, A.B., Chan, H.T., and Chan, W.K.: Indium tin oxide nanorod electrodes for polymer photovoltaics. ACS Appl. Mater. Interfaces 3, 522 (2011).
39.Li, L., Chen, S., Kim, J., Xu, C., Zhao, Y., and Ziegler, K.J.: Controlled synthesis of tin-doped indium oxide nanowire. J. Cryst. Growth 413, 31 (2015).
40.Fu, W., Wang, Y., Han, W., Zhang, Z., Zha, H., and Xie, E.: Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J. Mater. Chem. A 4, 173 (2016).


Type Description Title
Supplementary materials

Li et al. supplementary material
Li et al. supplementary material 1

 Word (2.4 MB)
2.4 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed