Skip to main content Accessibility help

Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate

  • Mingyuan Lu (a1), Hongtao Xie (a1), Han Huang (a1), Jin Zou (a2) and Yuehui He (a3)...


Nanoindentation was performed on amorphous silicon nitride films of different thicknesses deposited on gallium arsenide (GaAs) (001) substrates using a conical indenter. Both “pop-in” and ‘pop-out’ were observed from the load-displacement curves when the indentation load exceeded a critical value. Pop-in occurring during loading is associated with plane-slip in the GaAs substrate, and pop-out during unloading is attributed to the interfacial delamination between the film and the substrate. Finite element modeling (FEM) was used to analyze the stress evolution during unloading. The FEM results showed that the stress at the interface evolved from compressive to tensile status during the withdrawal of indentation load, and the interfacial debonding was induced at a critical tensile stress, which is consistent with the pop-out observed. A deformation model for interpreting the pop-in and pop-out events is thereby proposed.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Smith, F.W., Le, H.Q., Diadiuk, V., Hollis, M.A., Calawa, A.R., Gupta, S., Frankel, M., Dykaar, D.R., Mourou, G.A., and Hsiang, T.Y.: Picosecond GaAs-based photoconductive optoelectronic detectors. Appl. Phys. Lett. 54, 890 (1989).
2.Lam, D.K.W. and Macdonald, R.I.: GaAs optoelectronic mixer operation at 4.5 GHz. IEEE Trans. Electron Devices 31, 1766 (1984).
3.Saito, Y., Isozaki, T., Masuda, A., Fukumoto, K., Chosa, M., Ito, T., Bauer, C.E., Inspektor, A., and Oles, E.J.: Adhesion strength of diamond film on cemented carbide insert. Diamond Relat. Mater. 2, 1391 (1993).
4.Yota, J.: Interlevel dielectric processes using PECVD silicon nitride, polyimide, and polybenzoxazole for GaAs HBT technology. J. Electrochem. Soc. 156, G173 (2009).
5.Hallakoun, I., Toledo, I., Kaplun, J., Bunin, G., Leibovitch, M., and Shapira, Y.: Critical dimension improvement of plasma enhanced chemical vapor deposition silicon nitride thin films in GaAs devices. Mater. Sci. Eng., B 102, 352 (2003).
6.Gioti, M., Logothetidis, S., and Charitidis, C.: Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl. Phys. Lett. 73, 184 (1998).
7.Chang, S-Y., Tsai, H-C., Chang, J-Y., Lin, S-J., and Chang, Y-S.: Analyses of interface adhesion between porous SiOCH low-k film and SiCN layers by nanoindentation and nanoscratch tests. Thin Solid Films 516, 5334 (2008).
8.Chang, E.Y., Cibuzar, G.T., Vanhove, J.M., Nagarajan, R.M., and Pande, K.P.: GaAs devices passivation using sputtered silicon nitride. Appl. Phys. Lett. 53, 1638 (1988).
9.Jaouad, A., Aimez, V., and Aktik, C.: GaAs passivation by low-frequency plasma- enhanced chemical vapor deposition of silicon nitride. Electron. Lett. 40, 1024 (2004).
10.Yeap, K.B., Zeng, K.Y., Jiang, H.Y., Shen, L., and Chi, D.Z.: Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique. J. Appl. Phys. 101, 123531 (2007).
11.Singh, R.K., Tilbrook, M.T., Xie, Z.H., Bendavid, A., Martin, P.J., Munroe, P., and Hoffman, M.: Contact damage evolution in diamond-like carbon coatings on ductile substrates. J. Mater. Res. 23, 27 (2008).
12.Bull, S.J.: Failure modes in scratch adhesion testing. Surf. Coat. Technol. 50, 25 (1991).
13.Perry, A.J.: Scratch adhesion testing of hard coatings. Thin Solid Films 107, 167 (1983).
14.Chen, J.J. and Bull, S.J.: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(3), 034001 (2011).
15.Volinsky, A.A., Moody, N.R., and Gerberich, W.W.: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441 (2002).
16.Zhang, S., Wang, Y.S., Zeng, X.T., Khor, K.A., Weng, W.J., and Sun, D.E.: Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 516, 5162 (2008).
17.Jacobsson, R.: Measurement of the adhesion of thin films. Thin Solid Films 34, 191 (1976).
18.Hegemann, D., Brunner, H., and Oehr, C.: Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods 208, 281 (2003).
19.Kim, J., Kim, K.S., and Kim, Y.H.: Mechanical effects in peel adhesion test. J. Adhes. Sci. Technol. 3, 175 (1989).
20.Dauskardt, R.H., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multilayer thin film structures. Eng. Fract. Mech. 61, 141 (1998).
21.Litteken, C., Dauskardt, R., Scherban, T., Xu, G., Leu, J., Gracias, D., and Sun, B.: Interfacial adhesion of thin-film patterned interconnect structures. In Proceedings of the IEEE 2003 International, New York, 2003 (IEEE, New York, NY, 2003); p. 168.
22.DeBoer, M.P. and Gerberich, W.W.: Microwedge indentation of the thin film fine line. 1. Mech. Acta Mater. 44, 3169 (1996).
23.DeBoer, M.P. and Gerberich, W.W.: Microwedge indentation of the thin film fine line. 2. Exp. Acta Mater. 44, 3177 (1996).
24.Zhang, S. and Zhang, X.M.: Toughness evaluation of hard coatings and thin films. Thin Solid Films 520, 2375 (2012).
25.Huang, H., Winchester, K.J., Suvorova, A., Lawn, B.R., Liu, Y., Hu, X.Z., Dell, J.M., and Faraone, L.: Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng., A 435, 453 (2006).
26.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
27.Huang, H., Winchester, K., Liu, Y., Hu, X.Z., Musca, C.A., Dell, J.M., and Faraone, L.: Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filters. J. Micromech. Microeng. 15, 608 (2005).
28.Jung, Y.G., Lawn, B.R., Martyniuk, M., Huang, H., and Hu, X.Z.: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076 (2004).
29.Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. Trans. ASME 54, 525 (1987).
30.ANSYS Academic Research Release 13.0, Help System, 4.13. Cohesive Zone Material Model, (ANSYS, Inc., 2007).
31.Sheng Liu, H.H. and Gu, Y.: Deconvolution of mechanical properties of thin films from nanoindentation measurement via finite element optimization. Thin Solid Films 526, 183 (2012).
32.Le Bourhis, E. and Patriarche, G.: Structure of nanoindentations in heavily n- and p-doped (001) GaAs. Acta Mater. 56(7), 1417 (2008).
33.Le Bourhis, E. and Patriarche, G.: Structure of annealed nanoindentations in n- and p-doped (001)GaAs. J. Appl. Phys. 106, 123516 (2009).
34.Taylor, C.R., Malshe, A.P., Salamo, G., Prince, R.N., Riester, L., and Cho, S.O.: Characterization of ultra-low-load (mu N) nanoindents in GaAs(100) using a cube corner tip. Smart Mater. Struct. 14, 963 (2005).
35.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 78, 3235 (2001).
36.Lloyd, S.J., Molina-Aldareguia, J.M., and Clegg, W.J.: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16, 3347 (2001).
37.Hainsworth, S.V., McGurk, M.R., and Page, T.F.: The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 102, 97 (1998).
38.Chen, J. and Bull, S.J.: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D: Appl. Phys. 40, 5401 (2007).
39.Chen, J. and Bull, S.J.: Finite element analysis of contact induced adhesion failure in multilayer coatings with weak interfaces. Thin Solid Films 517(13), 3704 (2009).


Related content

Powered by UNSILO

Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate

  • Mingyuan Lu (a1), Hongtao Xie (a1), Han Huang (a1), Jin Zou (a2) and Yuehui He (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.