Skip to main content Accessibility help

Increased fracture toughness in nanoporous silica–polyimide matrix composites

  • Shiling Ruan (a1), John J. Lannutti (a1), Stan Prybyla (a2) and Robert R. Seghi (a3)


Silica–polyimide nanocomposites were prepared by hot-pressing mixtures of polyimide and highly porous silica powder. The silica powder was produced using a sol-gel process that generates pores as small as 15 Å. The effects of loading, cure, and post-cure temperature on fracture toughness were investigated. The addition of silica particles improved the fracture toughness from 0.5 to a maximum of 1.9 MPa m0.5. However, fracture toughness dropped at silica weight percentages ≥30%. The cure and post-curing temperatures have a strong influence on toughness; post-curing exposure ≥400 °C reduced toughness. Transmission electron microscopy examination of the fracture surfaces indicated that the toughness improvements may occur at the nanometer scale due to crack pinning and branching induced by the nanoporous silica particles.



Hide All
1.Gleiter, H., Adv. Mater. 4, 474 (1992).
2.Gleiter, H., Nanostruct. Mater. 1, 1 (1992).
3.Siegel, R.W., Nanostruct Mater. 3, 1 (1993).
4.Digani, R., Chem. Eng. News 72, 18 (1992).
5.Gonsalves, K.E. and Chen, X., in The polymeric materials encyclopedia: synthesis, properties and applications, the polymer science and technology series, edited by Salamone, J.C. (CRC Press, Boca Raton, FL, 1996).
6.Becze, C.E. and Xu, G., J. Mater. Res. 12, 566 (1997).
7.Messersmith, P.B., Osenar, P., and Stupp, S.I., J. Mater. Res. 14, 315 (1999).
8.Chen, G. and Qi, Z., J. Mater. Res. 15, 351 (2000).
9.Luo, J., Lannutti, J.J., and Seghi, R.R., J. Dent. Res. 76, 2455 (1997).
10.Luo, J., Lannutti, J.J., and Seghi, R.R., J. Dent. Res. 76, 1967 (1997).
11.Luo, J., Lannutti, J.J., and Seghi, R.R., Mater. Sci. Eng. C 5, 15 (1997).
12.Kaas, R.L. and Kardos, J.L., Polym. Eng. Sci. 11, 11 (1971).
13.Leyden, E.J., Silanes, Surfaces and Interface (Gordon and Breach, New York, 1985).
14.Luo, J. and Lannutti, J.J., Dent. Mater. 14, 29 (1998).
15.Zhu, Z.K., Yang, Y., Yin, J., and Qi, Z.N., J. Appl. Polym. Sci. 73, 2977 (1999).
16.Mascia, L., Zhang, Z., and Shaw, S.J., Composites, Part A 27, 1221 (1996).
17.Chen, Y. and Iroh, J.O., Chem. Mater. 11, 1218 (1999).
18.Iyoku, Y., Kakimoto, M., and Imai, Y., J. Mater. Chem. 2, 679 (1992).
19.Prybyla, S., SuperImide™ 800 Resin and Composites: Neat resin performance, thermo-oxidative stability and hygrothermal stability, High Temple Workshop XIX (Adam’s Mark Hotel, Denver, Colorado, February 1–4, 1999).
20.Ou, Y., Yang, F., Yu, Z., J. Polym. Sci., Part B: Polym. Phys. 36, 789 (1998).
21.Yang, F. and Ou, Y., J. Appl. Polym. Sci. 69, 355 (1998).
22.Morgan, R.J., Jurek, R.J., Larive, D.E., Tung, C.M., and Donnelan, T., Adv. Chem. Ser. 233 (Toughened Plastics I), 493 (1993).
23.White, S.R. and Hahn, H.T., J. Compos. Mater. 27, 1352 (1993).
24.Nawaz, G.M., in Fractography Of Modern Engineering Materials: Composite Materials: Composites And Metals, ASTM STP 948, edited by Masters, J.E. and Au, J.J. (American Society of Testing and Materials, Philadelphia, PA, 1987), Vol. 177.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed