Skip to main content Accessibility help

In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ɛ-caprolactone) and polyethylenimine

  • Xin Jing (a1), Hao-Yang Mi (a1), Max R. Salick (a2), Travis Cordie (a3), Jason McNulty (a4), Xiang-Fang Peng (a5) and Lih-Sheng Turng (a6)...


The work was intended to explore the effect of the widely available cationic polymer polyethylenimine (PEI) on small diameter poly(ɛ-caprolactone) (PCL) blood vessel grafts. PEI was blended with PCL and electrospun into nanofibrous vascular scaffolds. The morphologies, wettabilities, mechanical properties, and biological activities of the PCL/PEI electrospun nanofibers were investigated. It was found that by increasing the content of PEI to 5% within the scaffolds, the fiber diameters decreased from 469.7 ± 212.1 to 282.5 ± 107.1 nm, the water contact angle was reduced from 126.6 ± 1.1° to 27.6 ± 3.9°, while the Young's modulus increased from 2.0 ± 0.2 to 4.1 ± 0.1 MPa, the suture retention strength increased from 4.2 ± 0.4 to 6.1 ± 0.7 N, and the burst pressure increased from 801.2 ± 14.1 to 926.2 ± 22.8 mmHg. The in vitro evaluations demonstrated that the nanofibers containing 2% PEI promoted the attachment and proliferation of human umbilical vein endothelial cells (HUVECs).


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Seifu, D.G., Purnama, A., Mequanint, K., and Mantovani, D.: Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10(7), 410 (2013).
2. Ma, H., Hu, J., and Ma, P.X.: Polymer scaffolds for small-diameter vascular tissue engineering. Adv. Funct. Mater. 20(17), 2833 (2010).
3. Kannan, R.Y., Salacinski, H.J., Butler, P.E., Hamilton, G., and Seifalian, A.M.: Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res., Part B 74(1), 570 (2005).
4. Wang, X., Lin, P., Yao, Q., and Chen, C.: Development of small-diameter vascular grafts. World J. Surg. 31(4), 682 (2007).
5. Keuren, J.F., Wielders, S.J., Driessen, A., Verhoeven, M., Hendriks, M., and Lindhout, T.: Covalently-bound heparin makes collagen thromboresistant. Arterioscler., Thromb., Vasc. Biol. 24(3), 613 (2004).
6. Sayers, R.D., Raptis, S., Berce, M., and Miller, J.H.: Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br. J. Surg. 85(7), 934 (1998).
7. Bujan, J., Garcia-Honduvilla, N., and Bellon, J.M.: Engineering conduits to resemble natural vascular tissue. Biotechnol. Appl. Biochem. 39, 17 (2004).
8. Rashid, S.T., Fuller, B., Hamilton, G., and Seifalian, A.M.: Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 22(6), 2084 (2008).
9. Nerem, R.M. and Seliktar, D.: Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3, 225 (2001).
10. Edelman, E.R.: Vascular tissue engineering—designer arteries. Circ. Res. 85(12), 1115 (1999).
11. L'Heureux, N., Paquet, S., Labbe, R., Germain, L., and Auger, F.A.: A completely biological tissue-engineered human blood vessel. FASEB J. 12(1), 47 (1998).
12. Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R., and Langer, R.: Functional arteries grown in vitro. Science 284(5413), 489 (1999).
13. Hu, J., Sun, X., Ma, H., Xie, C., Chen, Y.E., and Ma, P.X.: Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 31(31), 7971 (2010).
14. Lovett, M., Cannizzaro, C., Daheron, L., Messmer, B., Vunjak-Novakovic, G., and Kaplan, D.L.: Silk fibroin microtubes for blood vessel engineering. Biomaterials 28(35), 5271 (2007).
15. Lovett, M., Eng, G., Kluge, J.A., Cannizzaro, C., Vunjak-Novakovic, G., and Kaplan, D.L.: Tubular silk scaffolds for small diameter vascular grafts. Organogenesis 6(4), 217 (2010).
16. Lindsay, S.W., Konstantinos, T., Eun, S.G., Fiorenzo, G.O., and David, L.K.: Microfabricated porous silk scaffolds for vascularizing engineered tissues. Adv. Funct. Mater. 23(27), 3404 (2013).
17. Soletti, L., Hong, Y., Guan, J., Stankus, J.J., El-Kurdi, M.S., Wagner, W.R., and Vorp, D.A.: A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 6(1), 110 (2010).
18. McClure, M.J., Wolfe, P.S., Rodriguez, I.A., and Bowlin, G.L.: Bioengineered vascular grafts: Improving vascular tissue engineering through scaffold design. J. Drug Delivery Sci. Technol. 21(3), 211 (2011).
19. Cleary, M.A., Geiger, E., Grady, C., Best, C., Naito, Y., and Breuer, C.: Vascular tissue engineering: The next generation. Trends Mol. Med. 18(7), 394 (2012).
20. Naito, Y., Shinoka, T., Duncan, D., Hibino, N., Solomon, D., Cleary, M., Rathore, A., Fein, C., Church, S., and Breuer, C.: Vascular tissue engineering: Towards the next generation vascular grafts. Adv. Drug Delivery Rev. 63(4–5), 312 (2011).
21. Lee, S.J., Liu, J., Oh, S.H., Soker, S., Atala, A., and Yoo, J.J.: Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19), 2891 (2008).
22. Wang, S., Zhang, Y., Wang, H., Yin, G., and Dong, Z.: Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromolecules 10(8), 2240 (2009).
23. Marelli, B., Alessandrino, A., Fare, S., Freddi, G., Mantovani, D., and Tanzi, M.C.: Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 6(10), 4019 (2010).
24. Du, F., Wang, H., Zhao, W., Li, D., Kong, D., Yang, J., and Zhang, Y.: Gradient nanofibrous chitosan/poly epsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 33(3), 762 (2012).
25. Han, F., Jia, X., Dai, D., Yang, X., Zhao, J., Zhao, Y., Fan, Y., and Yuan, X.: Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials 34(30), 7302 (2013).
26. Prabhakaran, M.P., Venugopal, J.R., Chyan, T.T., Hai, L.B., Chan, C.K., Lim, A.Y., and Ramakrishna, S.: Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng., Part A 14(11), 1787 (2008).
27. Prabhakaran, M.P., Venugopal, J., Chan, C.K., and Ramakrishna, S.: Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19(45), 455102 (2008).
28. Zhu, Y., Gao, C., Liu, X., and Shen, J.: Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6), 1312 (2002).
29. Ogris, M., Brunner, S., Schuller, S., Kircheis, R., and Wagner, E.: PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6(4), 595 (1999).
30. Zhou, X., Laroche, F.J.F., Lamers, G., Torraca, V., Voskamp, P., Lu, T., Chu, F., Spaink, H.P., Abrahams, J.P., and Liu, Z.: Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 5(10), 703 (2012).
31. Andersson, M.M. and Hatti-Kaul, R.: Protein stabilising effect of polyethyleneimine. J. Biotechnol. 72(1–2), 21 (1999).
32. Vancha, A.R., Govindaraju, S., Parsa, K.V., Jasti, M., Gonzalez-Garcia, M., and Ballestero, R.P.: Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnol. 4, 23 (2004).
33. Boussif, O., Lezoualch, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., and Behr, J.P.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo: Polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92(16), 7297 (1995).
34. Forrest, M.L., Meister, G.E., Koerber, J.T., and Pack, D.W.: Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res. 21(2), 365 (2004).
35. Kim, J.H., Choung, P-H., Kim, I.Y., Lim, K.T., Son, H.M., Choung, Y-H., Cho, C-S., and Chung, J.H.: Electrospun nanofibers composed of poly(epsilon-caprolactone) and polyethylenimine for tissue engineering applications. J. Mater. Sci. Eng. B 29(5), 1725 (2009).
36. Vaz, C.M., van Tuijl, S., Bouten, C.V., and Baaijens, F.P.: Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 1(5), 575 (2005).
37. Ghezzi, C.E., Marelli, B., Muja, N., and Nazhat, S.N.: Immediate production of a tubular dense collagen construct with bioinspired mechanical properties. Acta Biomater. 8(5), 1813 (2012).
38. Courtney, T., Sacks, M.S., Stankus, J., Guan, J., and Wagner, W.R.: Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19), 3631 (2006).
39. Lee, S.J., Lim, G.J., Lee, J.W., Atala, A., and Yoo, J.J.: In vitro evaluation of a poly(lactide-co-glycolide)-collagen composite scaffold for bone regeneration. Biomaterials 27(18), 3466 (2006).
40. Cui, W., Cheng, L., Li, H., Zhou, Y., Zhang, Y., and Chang, J.: Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer 53(11), 2298 (2012).
41. Mikos, A.G., Lyman, M.D., Freed, L.E., and Langer, R.: Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue-culture. Biomaterials 15(1), 55 (1994).
42. Amiel, G.E., Komura, M., Shapira, O., Yoo, J.J., Yazdani, S., Berry, J., Kaushal, S., Bischoff, J., Atala, A., and Soker, S.: Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng. 12(8), 2355 (2006).
43. Stekelenburg, M., Rutten, M.C., Snoeckx, L.H., and Baaijens, F.P.: Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng., Part A 15(5), 1081 (2009).
44. Fung, Y.C.: Bioviscoelastic solids: Collagen. In Biomechanics; Mechanical Properties of Living Tissues, Springer, New York, NY, 1999; p. 261.
45. Konig, G., McAllister, T.N., Dusserre, N., Garrido, S.A., Iyican, C., Marini, A., Fiorillo, A., Avila, H., Wystrychowski, W., Zagalski, K., Maruszewski, M., Jones, A.L., Cierpka, L., de la Fuente, L.M., and L'Heureux, N.: Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8), 1542 (2009).
46. Billiar, K., Murray, J., Laude, D., Abraham, G., and Bachrach, N.: Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa. J. Biomed. Mater. Res. 56(1), 101 (2001).
47. Oskoui, P., Stadler, I., and Lanzafame, R.J.: A preliminary study of laser tissue soldering as arterial wall reinforcement in an acute experimental aneurysm model. Laser Surg. Med. 32(5), 346 (2003).
48. Sarkar, S., Salacinski, H.J., Hamilton, G., and Seifalian, A.M.: The mechanical properties of infrainguinal vascular bypass grafts: Their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31(6), 627 (2006).
49. Seliktar, D., Black, R.A., Vito, R.P., and Nerem, R.M.: Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4), 351 (2000).
50. Tryoen-Toth, P., Vautier, D., Haikel, Y., Voegel, J.C., Schaaf, P., Chluba, J., and Ogier, J.: Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J. Biomed. Mater. Res. 60(4), 657 (2002).
51. Kuo, Y.C. and Ku, I.N.: Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue. Biotechnol. Prog. 25(5), 1459 (2009).
52. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E.: Geometric control of cell life and death. Science 276(5317), 1425 (1997).
53. Zhu, H., Ji, J., Tan, Q., Barbosa, M.A., and Shen, J.: Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules. Biomacromolecules 4(2), 378 (2003).
54. Hersel, U., Dahmen, C., and Kessler, H.: RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24), 4385 (2003).
55. Ku, S.H. and Park, C.B.: Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31(36), 9431 (2010).


In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ɛ-caprolactone) and polyethylenimine

  • Xin Jing (a1), Hao-Yang Mi (a1), Max R. Salick (a2), Travis Cordie (a3), Jason McNulty (a4), Xiang-Fang Peng (a5) and Lih-Sheng Turng (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed