Skip to main content Accessibility help
×
Home

In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices

  • Yomaira L. Uscátegui (a1), Luis E. Díaz (a2) and Manuel F. Valero (a3)

Abstract

Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: manuelvv@unisabana.edu.co

References

Hide All
1.Vogels, R.R., Lambertz, A., Schuster, P., Jockenhoevel, S., Bouvy, N.D., Disselhorst-Klug, C., Neumann, U.P., Klinge, U., and Klink, C.D.: Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. J. Biomed. Mater. Res., Part B 105, 99 (2017).
2.Israelsson, L.A. and Millbourn, D.: Closing midline abdominal incisions. Langenbeck’s Arch. Surg. 397, 1201 (2012).
3.Zhang, G., Ren, T., Zhang, S., Zeng, X., and van der Heide, E.: Study on the tribological behavior of surgical suture interacting with a skin substitute by using a penetration friction apparatus. Colloids Surf., B 162, 228 (2018).
4.Arévalo, F., Uscátegui, Y.L., Díaz, L., Cobo, M., and Valero, M.F.: Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J. Biomater. Appl. 31, 708 (2016).
5.Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., Borghi, F., Menciassi, A., and Lenardi, C.: 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. J. Mech. Behav. Biomed. Mater. 75, 147 (2017).
6.Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M.C., Imani, R., Baheiraei, N., Farokhi, M., and Farè, S.: Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng., C 82, 130 (2018).
7.Park, H., Gong, M.S., Park, J.H., Moon, S.I., Wall, I.B., Kim, H.W., Lee, J.H., and Knowles, J.C.: Silk fibroin-polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomater. 9, 8962 (2013).
8.Mi, H.Y., Jing, X., Hagerty, B.S., Chen, G., Huang, A., and Turng, L.S.: Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Mater. Des. 127, 106 (2017).
9.Solanki, A., Das, M., and Thakore, S.A.: A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr. Polym. 181, 1003 (2018).
10.Da, L., Gong, M., Chen, A., Zhang, Y., Huang, Y., Guo, Z., Li, S., Li-Ling, J., Zhang, L., and Xie, H.: Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 59, 45 (2017).
11.Zia, F., Zia, K.M., Zuber, M., Tabasum, S., and Rehman, S.: Heparin based polyurethanes: A state-of-the-art review. Int. J. Biol. Macromol. 84, 101 (2016).
12.Shahrousvand, M., Sadeghi, G.M.M., Shahrousvand, E., Ghollasi, M., and Salimi, A.: Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf., B 156, 292 (2017).
13.Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., Gajda, M., Bräuer, R., and Schnabelrauch, M.: In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Mater. Sci. Eng., C 78, 163 (2017).
14.Gamerith, C., Herrero Acero, E., Pellis, A., Ortner, A., Vielnascher, R., Luschnig, D., Zartl, B., Haernvall, K., Zitzenbacher, S., Strohmeier, G., Hoff, O., Steinkellner, G., Gruber, K., Ribitsch, D., and Guebitz, G.M.: Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polym. Degrad. Stab. 132, 69 (2016).
15.Ng, W.S., Lee, C.S., Chuah, C.H., and Cheng, S.F.: Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind. Crops Prod. 97, 65 (2017).
16.Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., and Datta, J.: The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Prog. Org. Coat. 115, 41 (2018).
17.Gil-Castell, O., Badia, J.D., Ontoria-Oviedo, I., Castellano, D., Marco, B., Rabal, A., Bou, J.J., Serra, A., Monreal, L., Blanes, M., Sepúlveda, P., and Ribes-Greus, A.: In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case. Polym. Test. 66, 256 (2018).
18.Mekewi, M.A., Ramadan, A.M., ElDarse, F.M., Abdel Rehim, M.H., Mosa, N.A., and Ibrahim, M.A.: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egypt. J. Pet. 26, 9 (2017).
19.Zhang, C., Garrison, T.F., Madbouly, S.A., and Kessler, M.R.: Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 71, 91 (2017).
20.Madra, H., Tantekin-Ersolmaz, B., and Guner, F.S.: Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polym. Test. 28, 773 (2009).
21.Pfister, D.P., Xia, Y., and Larock, R.C.: Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4, 703 (2011).
22.Petrović, Z.S., Milic, J., Zhang, F., and Ilavsky, J.: Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121, 26 (2017).
23.Lligadas, G., Ronda, J.C., Galià, M., and Cádiz, V.: Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromolecules 11, 2825 (2010).
24.Jayavani, S., Sunanda, S., Varghese, T.O., and Nayak, S.K.: Synthesis and characterizations of sustainable polyester polyols from non-edible vegetable oils: Thermal and structural evaluation. J. Cleaner Prod. 162, 795 (2017).
25.Ismail, E.A., Motawie, A.M., and Sadek, E.M.: Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egypt. J. Pet. 20, 1 (2011).
26.Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, A., Corcuera, M.A., and Eceiza, A.: Thermally-responsive biopolyurethanes from a biobased diisocyanate. Eur. Polym. J. 70, 173 (2015).
27.Uscátegui, Y.L., Díaz, L.E., and Valero, M.F.: Revisão. Quim. Nova 41, 434 (2018).
28.Meneguelli de Souza, L.C., de Carvalho, L.P., Araújo, J.S., de Melo, E.J.T., and Machado, O.L.: Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. Int. J. Biol. Macromol. 113, 821 (2018).
29.Hejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., and Piszczyk, L.: The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 95, 113 (2017).
30.Omonov, T.S., Kharraz, E., and Curtis, J.M.: Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Ind. Crops Prod. 107, 378 (2017).
31.Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., and Valero, M.: Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J. Biomater. Sci., Polym. Ed. 27, 1860 (2016).
32.dos Santos, M.R., Alcaraz-Espinoza, J.J., da Costa, M.M., and de Oliveira, H.P.: Usnic acid-loaded polyaniline/polyurethane foam wound dressing: Preparation and bactericidal activity. Mater. Sci. Eng., C 89, 33 (2018).
33.Serrano, C., García-Fernández, L., Fernández-Blázquez, J.P., Barbeck, M., Ghanaati, S., Unger, R., Kirkpatrick, J., Arzt, E., Funk, L., Turón, P., and del Campo, A.: Nanostructured medical sutures with antibacterial properties. Biomaterials 52, 291 (2015).
34.Fabbri, M., Guidotti, G., Soccio, M., Lotti, N., Govoni, M., Giordano, E., Gazzano, M., Gamberini, R., Rimini, B., and Munari, A.: Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym. Degrad. Stab. 153, 53 (2018).
35.Angeloni, V., Contessi, N., De Marco, C., Bertoldi, S., Tanzi, M.C., Daidone, M.G., and Farè, S.S.: Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomater. 63, 306 (2017).
36.Gossart, A., Battiston, K.G., Gand, A., Pauthe, E., and Santerre, J.P.: Mono versus multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomater. 66, 129 (2018).
37.Zhang, J., Woodruff, T.M., Clark, R.J., Martin, D.J., and Minchin, R.F.: Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomater. 41, 264 (2016).
38.Carriço, C.S., Fraga, T., and Pasa, V.M.: Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53 (2016).
39.Kim, H., Kang, D.H., Kim, M., Jiao, A., Kim, D.H., and Suh, K.Y.: Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng. 40, 1339 (2012).
40.Nemir, S. and West, J.L.: Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38, 2 (2010).
41.Vatankhah, E., Semnani, D., Prabhakaran, M.P., Tadayon, M., Razavi, S., and Ramakrishna, S.: Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater. 10, 709 (2014).
42.Alves, N.O., Da Silva, G.T., Weber, D.M., Luchese, C., Wilhelm, E.A., and Fajardo, A.R.: Chitosan/poly(vinyl alcohol)/bovine bone powder biocomposites: A potential biomaterial for the treatment of atopic dermatitis-like skin lesions. Carbohydr. Polym. 148, 115 (2016).
43.Uscátegui, Y.L., Arévalo-Alquichire, S.J., Gómez-Tejedor, J.A., Vallés-Lluch, A., Díaz, L.E., and Valero, M.F.: Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J. Mater. Res. 32, 3699 (2017).
44.Zhou, Y., Sheng, D., Liu, X., Lin, C., Ji, F., Dong, I., Xu, S., and Yang, Y.: Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials. Sol. Energy Mater. Sol. Cells 174, 84 (2018).
45.Sáenz-Pérez, M., Lizundia, E., Laza, J.M., García-Barrasa, J., Vilas, J.L., and León, L.M.: Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: Thermal, shape-memory and mechanical behavior. RSC Adv. 6, 69094 (2016).
46.Coakley, D.N., Shaikh, F.M., O’Sullivan, K., Kavanagh, E.G., Grace, P.A., and McGloughlin, T.M.: In vitro evaluation of acellular porcine urinary bladder extracellular matrix—A potential scaffold in tissue engineered skin. Wound. Med. 10–11, 9 (2015).
47.Totaro, G., Cruciani, L., Vannini, M., Mazzola, G., Di Gioia, D., Celli, A., and Sisti, L.: Synthesis of castor oil-derived polyesters with antimicrobial activity. Eur. Polym. J. 56, 174 (2014).
48.Fu, H., Wang, Y., Li, X., and Chen, W.: Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 126, 86 (2016).
49.Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., and de la Caba, K.: Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 105, 1358 (2017).
50.Gibson-Corley, K.N., Olivier, A.K., and Meyerholz, D.K.: Principles for valid histopathologic scoring in research. Vet. Pathol. 50, 1007 (2013).
51.Inzana, J.A., Schwarz, E.M., Kates, S.L., and Awad, H.A.: Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 81, 58 (2016).
52.Gabriel, L.P., Santos, M.E.M., Jardini, A.L., Bastos, G.N.T., Dias, C.G.T., Webster, T.T.J., and Maciel Filho, R.: Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine 13, 201 (2017).
53.Valero, M.F. and Ortegón, Y.: Polyurethane elastomers-based modified castor oil and poly(ε-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation. J. Elastomers Plast. 47, 360 (2015).
54.Rezvanain, M., Ahmad, N., Mohd Amin, M.C.I., and Ng, S.F.: Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 97, 131 (2017).
55.Wu, D., Cui, H., Zhu, J., Qin, X., and Xie, T.: Novel amino acid based nanogel conjugated suture for antibacterial application. J. Mater. Chem. B 4, 2606 (2016).
56.Garg, B., Sandhu, V., Sood, N., Sood, A., and Malhotra, V.: Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Pol. J. Pathol. 63, 172 (2012).

Keywords

In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices

  • Yomaira L. Uscátegui (a1), Luis E. Díaz (a2) and Manuel F. Valero (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed