Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T04:43:25.867Z Has data issue: false hasContentIssue false

In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid

Published online by Cambridge University Press:  01 May 2006

Satoshi Nakamura
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Wataru Sakamoto
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Toshinobu Yogo*
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
*
a) Address all correspondence to this author. e-mail: yogo@esi.nagoya-u.ac.jp
Get access

Abstract

A CoFe2O4 particle/organic hybrid was synthesized using in situ processing of metalorganics of cobalt and iron below 100 °C. A mixture of cobalt (II) acetylacetonate (CA) and iron (III) 3-allylacetylacetonate (IAA) was hydrolyzed and polymerized yielding cobalt ferrite particle/organic hybrid. The crystallinity of cobalt ferrite depended upon the hydrolysis conditions of cobalt acetylacetonate-iron 3-allylacetylacetonate (CA-IAA). Nanocrystalline cobalt ferrite particles were uniformly dispersed in the organic matrix. The saturation magnetization of hybrid increased with increasing crystallinity of cobalt ferrite particles in the organic matrix. The hybrid showed a magnetization-applied field (BH) curve with no coercive force at room temperature. The magnetization versus H/T curves from 150 to 300 K were superimposed on the same curve and satisfied the Langevin equation. The hybrid revealed a saturation magnetization of 33.7 emu/g and a coercivity of 11 kOe at 4.2 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sanchez, C., Lebeau, B.: Design and properties of hybrid organic-inorganic nanocomposite for photonics. MRS Bull. 26, 377 (2001).CrossRefGoogle Scholar
2.Gunther, L.: Quantum tunneling of magnetization. Phys. World 3, 28 (1990).CrossRefGoogle Scholar
3.Charles, S.W., Popplewell, J.: Ferromagnetic liquids Ferromagnetic Materials 2 edited by Wohlfarth, E.P. (North-Holland, Amsterdam, The Netherlands, 1980), p. 509.Google Scholar
4.Olsson, M.B.E., Persson, B.R.B., Salford, L.G., Schröder, U.: Ferromagnetic particles as contrast agent in T2 NMR imaging. Mag. Reson. Imaging 4, 437 (1986).CrossRefGoogle Scholar
5.Rand, R.W., Snow, H.D., Elliott, D.G., Snyder, M.: Thermomagnetic surgery for cancer. Appl. Biochem. Biotechnol. 6, 265 (1981).CrossRefGoogle ScholarPubMed
6.Zhang, L., Papaefthymiou, G.C., Ying, J.Y.: Size quantization and interfacial effects on a novel γ–Fe2O3/SiO2 magnetic nanocomposite via sol-gel matrix-mediated synthesis. J. Appl. Phys. 81, 6892 (1997).CrossRefGoogle Scholar
7.Yogo, T., Nakamura, T., Kikuta, K., Sakamoto, W., Hirano, S.: Synthesis of α–Fe2O3 particle/oligomer hybrid material. J. Mater. Res. 11, 475 (1996).CrossRefGoogle Scholar
8.Yogo, T., Nakamura, T., Sakamoto, W., Hirano, S.: Synthesis of magnetic particle/organic hybrid from metalorganic compounds. J. Mater. Res. 14, 2855 (1999).CrossRefGoogle Scholar
9.Yogo, T., Nakamura, T., Sakamoto, W., Hirano, S.: Synthesis of transparent magnetic particle/organic hybrid film using iron-organics. J. Mater. Res. 15, 2114 (2000).CrossRefGoogle Scholar
10.Batel, G.: Recording materials Ferromagnetic Materials 2 edited by Wohlfarth, E.P. (North-Holland, Amsterdam, The Netherlands, 1980), p. 381.Google Scholar
11.Berkovitz, A.E., Schuele, W.J.: Magnetic properties of some ferrite micropowders. J. Appl. Phys. 30, 134S (1959).CrossRefGoogle Scholar
12.Sato, T.: Formation and magnetic properties of ultrafine spinel ferrites. IEEE Trans. Mag. Mag. 6, 795 (1960).CrossRefGoogle Scholar
13.Hirano, S., Yogo, T., Kikuta, K., Asai, E., Sugiyama, K., Yamamoto, H.: Preparation and phase separation behavior of (Fe,Co)3O4 film. J. Am. Ceram. Soc. 76, 1788 (1993).CrossRefGoogle Scholar
14.Schuele, W.J., Deetscreek, V.D.: Preparation, growth and study of ultrafine ferrite particles. J. Appl. Phys. 32, 235S (1961).CrossRefGoogle Scholar
15.Pannaparayi, T., Marande, R., Komarneni, S., Sankar, S.G.: A novel low-temperature preparation of several ferrimagnetic spinels and their magnetic and Mössbauer characterization. J. Appl. Phys. 64, 5641 (1988).CrossRefGoogle Scholar
16.Tayim, H.A., Sabri, M.: Sythesis of some olefin-substituted metal acetylacetonates. Inorg. Nucl. Chem. Lett. 9, 753 (1973).CrossRefGoogle Scholar
17.Cullity, B.D.: Elements of X-ray Diffraction 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 284.Google Scholar
18.Waldron, R.D.: Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955).CrossRefGoogle Scholar
19. International Center for Diffraction Data (ICDD), Newtown Square, PA No. 22-1086.Google Scholar
20.Allen, G.C., Harris, S.J., Jutson, J.A., Dyke, J.M.: A study of a number of mixed transition metal oxide spinels using x-ray photoelectron spectroscopy. Appl. Surf. Sci. 37, 111 (1989).CrossRefGoogle Scholar
21.Smit, J., Wijn, H.P.J.: Ferrite (Wiley, New York, 1959), p. 157.Google Scholar
22.Berkovitz, A.E., Schuele, W.J., Flanders, P.J.: Influence of crystallite size on the magnetic properties of acicular γ–Fe2O3 particles. J. Appl. Phys. 39, 1261 (1968).CrossRefGoogle Scholar
23.Morrish, A.H.: The Physical Principles of Magnetism (John Wiley & Sons, New York, 1965), p. 360.Google Scholar