Skip to main content Accessibility help
×
Home

In situ synthesis of CsTi2NbO7@g-C3N4 core–shell heterojunction with excellent electrocatalytic performance for the detection of nitrite

  • Mengjun Wang (a1), Chao Liu (a2), Xiaobo Zhang (a1), Zichun Fan (a1), Jiasheng Xu (a1) and Zhiwei Tong (a3)...

Abstract

In this work, a N-doped CsTi2NbO7@g-C3N4 (NTCN) heterojunction nanocomposite was synthesized by a simple one-step calcination method. The as-prepared samples were characterized by means of X-ray diffraction patterns, scanning electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, and Fourier transformed infrared spectroscopy. The results showed that g-C3N4 was formed both on the surface and within the interlayers of CsTi2NbO7, in which CsTi2NbO7 was in situ doped by nitrogen atoms to form N–CsTi2NbO7. The NTCN composite displayed higher electrocatalytic activity toward the detection of nitrite than pure CsTi2NbO7 and g-C3N4. The main reasons could be attributed to the synergistic effects of morphology engineering, N-doping, and layered heterojunction. The NTCN-based electrochemical sensor expressed a good linear relationship range from 0.0999 to 3.15 mmol/L with a detection limit of 2.63 × 10−5 mol/L. The good recovery, stability, and reproducibility of this biosensor showed the potential application in environmental monitoring.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: Tong@hhit.edu.cn

References

Hide All
1.Li, S., Hu, Y., Wang, A., Weng, X., Chen, J., and Feng, J.: Simple synthesis of worm-like Au–Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens. Actuators, B 208, 468 (2015).
2.Wang, P., Li, F., Huang, X., Li, Y., and Wang, L.: In situ electrodeposition of Pt nanoclusters on glassy carbon surface modified by monolayer choline film and their electrochemical applications. Electrochem. Commun. 10, 195 (2008).
3.Zhang, Y., Su, Z., Li, B., Zhang, L., Fan, D., and Ma, H.: Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl. Mater. Interfaces 8, 12344 (2016).
4.Lin, Z., Xue, W., Chen, H., and Lin, J.M.: Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal. Chem. 83, 8245 (2011).
5.Ferreira, I.M.P.L.V.O. and Silva, S.: Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 74, 1598 (2008).
6.Wang, P., Wang, M., Zhou, F., Yang, G., Qu, L., and Miao, X.: Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem. Commun. 81, 74 (2017).
7.Wu, H., Fan, S., Jin, X., Zhang, H., Chen, H., Dai, Z., and Zou, X.: Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal. Chem. 86, 6285 (2014).
8.Wang, P., Mai, Z., Dai, Z., Li, Y., and Zou, X.: Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens. Bioelectron. 24, 3242 (2009).
9.Zou, C.E., Yang, B., Bin, D., Wang, J., Li, S., Yang, P., Wang, C., Shiraishi, Y., and Du, Y.: Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 488, 135 (2017).
10.Li, Y., Wang, P., Wang, L., and Lin, X.: Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens. Bioelectron. 22, 3120 (2007).
11.Wang, P., Zhou, F., Wang, Z., Lai, C., and Han, X.: Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J. Electroanal. Chem. 750, 36 (2015).
12.Shibata, T., Takanashi, G., Nakamura, T., Fukuda, K., Ebina, Y., and Sasaki, T.: Titanoniobate and niobate nanosheet photocatalysts: Superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ. Sci. 4, 535 (2011).
13.Takagaki, A., Yoshida, T., Lu, D., Kondo, J.N., Hara, M., Domen, K., and Hayashi, S.: Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts. J. Phys. Chem. B 108, 11549 (2004).
14.Wang, M., Xu, J., Zhang, X., Fan, Z., and Tong, Z.: Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Appl. Biochem. Biotechnol. 185, 834 (2018).
15.Zhang, X., Liu, L., Ma, J., Yang, X., Xu, X., and Tong, Z.: A novel metalloporphyrin intercalated layered niobate as an electrode modified material for detection of hydrogen peroxide. Mater. Lett. 95, 21 (2013).
16.Pan, B., Xu, J., Zhang, X., Li, J., Wang, M., Ma, J., Liu, L., Zhang, D., and Tong, Z.: Electrostatic self-assembly behaviour of exfoliated Sr2Nb3O10 nanosheets and cobalt porphyrins: Exploration of non-noble electro-catalysts towards hydrazine hydrate oxidation. J. Mater. Sci. 53, 6494 (2018).
17.Wang, M., Fan, Z., Yi, L., Xu, J., Zhang, X., and Tong, Z.: Construction of iron porphyrin/titanoniobate nanosheets sensors for the sensitive detection of nitrite. J. Mater. Sci. 53, 11403 (2018).
18.Wang, L., Nemoto, Y., and Yamauchi, Y.: Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133, 9674 (2011).
19.Sun, Y., Jiang, J., Liu, Y., Wu, S., and Zou, J.: A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl. Surf. Sci. 430, 362 (2018).
20.Wen, J., Xie, J., Chen, X., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).
21.Yuan, J., Wen, J., Zhong, Y., Li, X., Fang, Y., Zhang, S., and Liu, W.: Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 3, 18244 (2015).
22.Zhou, M., Hou, Z., Zhang, L., Liu, Y., Gao, Q., and Chen, X.: n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustainable Energy Fuels 1, 317 (2017).
23.Yu, T., Liu, L., and Yang, F.: Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system. Chin. J. Catal. 38, 270 (2017).
24.Li, Y., Lv, K., Ho, W., Zhao, Z., and Huang, Y.: Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. Chin. J. Catal. 38, 321 (2017).
25.Hao, R., Wang, G., Jiang, C., Tang, H., and Xu, Q.: In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surf. Sci. 411, 400 (2017).
26.Wang, B., Zhang, J., and Huang, F.: Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts. Appl. Surf. Sci. 391, 449 (2017).
27.Wang, M., Fang, M., Tang, C., Zhang, L., Huang, Z., Liu, Y., and Wu, X.: A C3N4/Bi2WO6 organic-inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).
28.Feng, Z., Zeng, L., Chen, Y., Ma, Y., Zhao, C., Jin, R., Lu, Y., Wu, Y., and He, Y.: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).
29.Chen, J., Shen, S., Guo, P., Wang, M., Su, J., Zhao, D., and Guo, L.: Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. J. Mater. Res. 29, 64 (2014).
30.Wang, L., Liu, H., Fu, H., Wang, Y., Yu, K., and Wang, S.: Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties. J. Mater. Res. 33, 1401 (2018).
31., X.L., Shen, J., Wu, Z., Wang, J., and Xie, J.: Deposition of Ag nanoparticles on g-C3N4 nanosheet by N, N-dimethylformamide: Soft synthesis and enhanced photocatalytic activity. J. Mater. Res. 29, 2170 (2014).
32.Fu, S., He, Y., Wu, Q., Wu, Y., and Wu, T.: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).
33.Liang, Y., Wu, W., Wang, P., Liou, S.C., Liu, D., and Ehrman, S.H.: Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4. Nano Res. 11, 4049 (2018).
34.Su, F., Mathew, S.C., Lipner, G., Fu, X., Antonietti, M., Blechert, S., and Wang, X.: mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 132, 16299 (2010).
35.Schwinghammer, K., Mesch, M.B., Duppel, V., Ziegler, C., Senkerand, J., and Lotsch, B.V.: Crystalline carbon nitride nanosheets for improved visible-lighthydrogen evolution. J. Am. Chem. Soc. 136, 1730 (2014).
36.Liu, C., Zhu, H., Zhu, Y., Dong, P., Hou, H., Xu, Q., Chen, X., Xi, X., and Hou, W.: Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Appl. Catal., B 228, 54 (2018).
37.Zeng, B., Zhang, L., Wan, X., Song, H., and Lv, Y.: Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens. Actuators, B 211, 370 (2015).
38.Hu, Y., Li, L., Zhang, L., and Lv, Y.: Dielectric barrier discharge plasma-assisted fabrication of g-C3N4-Mn3O4 composite for high-performance cataluminescence H2S gas sensor. Sens. Actuators, B 239, 1177 (2017).
39.Hang, N.T., Zhang, S., and Yang, W.: Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sens. Actuators, B 248, 940 (2017).
40.Yang, C., Wang, X., Liu, H., Ge, S., Yan, M., Yu, J., and Song, X.: An inner filter effect fluorescent sensor based on g-C3N4 nanosheets/chromogenic probe for simple detection of glutathione. Sens. Actuators, B 248, 639 (2017).
41.Wu, G., Hu, Y., Liu, Y., Zhao, J., Chen, X., Whoehling, V., Plesse, C., Nguyen, G.T.M., Vidal, F., and Chen, W.: Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 6, 7258 (2015).
42.Liang, Y., Guo, C., Cao, S., Tian, Y., and Lui, Q.: A high quality BiOCl film with petal-like hierarchical structures and its visible-light photocatalytic property. J. Nanosci. Nanotechnol. 13, 919 (2013).
43.Wei, Z., Liang, F., Liu, Y., Luo, W., Wang, J., Yao, W., and Zhu, Y.: Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/gC3N4 hybrid heterostructure thin film. Appl. Catal., B 201, 600 (2017).
44.Liu, C., Zhang, C., Wang, J., Xu, Q., Chen, X., Wang, C., Xi, X., and Hou, W.: N-doped CsTi2NbO7@g-C3N4 core–shell nanobelts with enhanced visible light photocatalytic activity. Mater. Lett. 217, 235 (2018).
45.Gunjakar, J.L., Kim, T.W., Kim, H.N., Kim, I.Y., and Hwang, S.J.: Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133, 14998 (2011).
46.Xu, J., Zhang, L., Shi, R., and Zhu, Y.: Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 1, 14766 (2013).
47.Liu, C., Wu, Q., Ji, M., Zhu, H., Hou, H., Yang, Q., Jiang, C., Wang, J., Tian, L., Chen, J., and Hou, W.: Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J. Alloys Compd. 723, 1121 (2017).
48.Xia, J., Ji, M., Di, J., Wang, B., Yin, S., Zhang, Q., He, M., and Li, H.: Construction of ultrathin C3N4/Bi4O5I2 layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight. Appl. Catal., B 191, 235 (2016).
49.Park, H., Shin, D.H., Song, T., Park, W.I., and Paik, U.: Synthesis of hierarchical porous TiNb2O7 nanotubes with controllable porosity and their application in high power Li-ion batteries. J. Mater. Chem. A 5, 6958 (2017).
50.Zhang, Z., Huang, J., Zhang, M., Yuan, Q., and Dong, B.: Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal., B 163, 298 (2015).
51.Liu, C., Sun, T., Wu, L., Liang, J., Huang, Q., Chen, J., and Hou, W.: N-doped Na2Ti6O13@TiO2 core–shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic performance. Appl. Catal., B 170–171, 17 (2015).
52.Hou, Y., Zuo, F., Dagg, A., and Feng, P.Y.: A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem., Int. Ed. 125, 1286 (2013).
53.Xiang, Q., Yu, J., and Jaroniec, M.: Preparation and eenhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 7355 (2011).
54.Laviron, E.: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19 (1979).
55.Afkhami, A., Soltani-Felehgari, F., Madrakian, T., and Ghaedi, H.: Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron. 51, 379 (2014).
56.Pham, X.H., Li, C.A., Han, K.N., Huynh-Nguyen, B.C., Le, T.H., Ko, E., Kim, J.H., and Seong, G.H.: Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators, B 193, 815 (2014).
57.Liu, C., Liang, J.Y., Han, R.R., Wang, Y.Z., Zhao, J., Huang, Q.J., Chen, J., and Hou, W.H.: S-doped Na2Ti6O13@TiO2 core–shell nanorods with enhanced visible light photocatalytic performance. Phys. Chem. Chem. Phys. 17, 15165 (2015).
58.Brylev, O., Sarrazin, M., Roué, L., and Bélanger, D.: Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim. Acta 52, 6237 (2007).

Keywords

Type Description Title
WORD
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 1

 Word (1.1 MB)
1.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed