Skip to main content Accessibility help

In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect

  • Yung-Yu Hsu (a1), Mario Gonzalez (a2), Frederick Bossuyt, Fabrice Axisa, Jan Vanfleteren (a3) and Ingrid De Wolf (a1)...


Electronic devices capable of performing in extreme mechanical conditions such as stretching, bending, or twisting will improve biomedical and wearable systems. The required capabilities cannot be achieved with conventional building geometries, because of structural rigidity and lack of mechanical stretchability. In this article, a zigzag-patterned structure representing a stretchable interconnect is presented as a promising type of building block. In situ experimental observations on the deformed interconnect are correlated with numerical analysis, providing an understanding of the deformation and failure mechanisms. The experimental results demonstrate that the zigzag-patterned interconnect enables stretchability up to 60% without rupture. This stretchability is accommodated by in-plane rotation of arms and out-of-plane deformation of crests. Numerical analysis shows that the dominating failure cause is interfacial in-plane shear stress. The plastic strain concentration at the arms close to the crests, obtained by numerical simulation, agrees well with the failure location observed in the experiment.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Lumelsky, V.J., Shur, M.S., and Wagner, S.: Sensitive skin. IEEE Sensors J. 1, 41 (2001).
2.Wagner, S., Bonderover, E., Jordan, W.B., and Sturm, J.C.: Electro-textiles: Concepts and challenges. Int. J. Hielt Speed Electron. Syst. 12, 1 (2002).
3.Jiang, H., Khang, D.Y., Song, J., Sun, Y., Huang, Y., and Rogers, J.A.: Finite deformation mechanics in buckled thin films on compliant supports. Proc. Nat. Acad. Sci. U.S.A. 104(40), 15607 (2007).
4.Jiang, H., Sun, Y., Rogers, J.A., and Huang, Y.: Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007).
5.Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B., Xiao, J., Wang, S., Huang, Y., and Rogers, J.A.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748 (2008).
6.Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y.Y., Zhuangjian, L., Chun, L., and Rogers, J.A.: Stretch-able and foldable silicon integrated circuits. Science 320, 507 (2008).
7.Ahn, J.H., Kim, H.S., Menard, E., Lee, K.J., Zhu, Z., Kim, D.H., Nuzzo, R.G., Rogers, J.A., Amlani, I., Kushner, V., Thomas, S.G., and Duenas, T.: Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90, 213501 (2007).
8.Lacour, S.P., Wagner, S., Huang, Z., and Suo, Z.: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82(15), 2404 (2003).
9.Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., and Suo, Z.: Electronic skin: Architecture and components. Physica E 25, 326 (2004).
10.Li, T., Huang, Z., Suo, Z., Lacour, S.P., and Wagner, S.: Stretchabil-ity of thin metal films on elastomer substrates. Appl. Phys. Lett. 85(16), 3435 (2004).
11.Li, T., Suo, Z., Lacour, S.P., and Wagner, S.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20(12), 3274 (2005).
12.Gray, D.S., Tien, J., and Chen, C.S.: High-conductive elastomeric electronics. Adv. Mater. 16(5), 393 (2004).
13.Brosteaux, D., Axisa, F., Gonzalez, M., and Vanfleteren, J.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28(7), 552 (2007).
14.Gonzalez, M., Axisa, F., Vanden Bulcke, M., Brosteaux, D., Vandevelde, B., and Vanfleteren, J.: Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825 (2008).
15.Hsu, Y.Y., Gonzalez, M., Bossuyt, F., Axisa, F., Vanfleteren, J., and DeWolf, I.: A novel interconnect design with high stretchability and fine pitch capability in applications of stretchable electronics. Mater. Res. Soc. Symp. Proc. (2009).
16.Chiu, S.L., Leu, J., and Ho, P.S.: Fracture of metal-polymer line structures. I: Semiflexible polyimide. J. Appl. Phys. 76(9), 5136 (1994).
17.MSC Marc User Manual.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed