Skip to main content Accessibility help
×
Home

In situ High-resolution Electron Microscope Observation of Phase Change in Nanometer-sized Alloy Particles

  • Jung-Goo Lee (a1), Hirotaro Mori (a1) and Hidehiro Yasuda (a2)

Abstract

From the study of alloy phase formation in nanometer-sized particles by in situ transmission electron microscopy, it is revealed that not only the surface energy but also the interface energy of an interface between two different phases (solid–solid or solid–liquid) significantly changes the phase equilibrium of nanometer-sized particles. These energies result in large suppression of the eutectic point, structural instability, and unique solid/liquid two-phase structures in isolated nanometer-sized alloy particles. A theoretical study based on thermodynamics, which is modified in such a manner that Gibbs free energies for bulk materials were modified by taking factors affecting the phase equilibrium of nanometer-sized alloy particles into consideration, was proved useful to evaluate the results obtained from experiments.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jg-lee@uhvem.osaka-u.ac.jp

References

Hide All
1Halperin, W.P.: Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533 (1986).
2Andres, R.P., Averback, R.S., Brown, W.L., Brus, L.E., III, W.A. Goddard, Kaldor, A., Louie, S.G., Moscovits, M., Peercy, P.S., Riley, S.J., Siegel, R.W., Spaepen, F. and Wang, Y.: Research opportunities on clusters and cluster-assembled materials. J. Mater. Res. 4, 704 (1989).
3Takayanagi, K., Tanishiro, Y., Takahashi, S. and Takahashi, M.: Structure analysis of Si(111)–7 × 7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367 (1985).
4Perebeinos, V., Chan, S-W. and Zhang, F.: ‘Madelung model’ predition for dependence of lattice parameter on nanocrystal size. Solid State Commun. 123, 296 (2002).
5Yokozeki, A. and Stein, G.: A metal cluster generator for gas-phase electron diffraction and its application to bismuth, lead, and indium. J. Appl. Phys. 49, 2224 (1978).
6Tsunekawa, S., Ito, S. and Kawazoe, T.: Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3, 871 (2003).
7Sambles, J.R.: An electron microscope study of evaporating small particles. Proc. R. Soc. London A 324, 339 (1971).
8Buffat, Ph. and Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A. 13, 2287 (1976).
9Allen, G.L., Bayles, R.A., Gile, W.W. and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).
10Tanaka, T. and Hara, S.: Thermodynamic evaluation of binary phase diagrams of small particles system. Z. Metallkd. 92, 467 (2001).
11Wautelet, M., Dauchot, J.P. and Hecq, M.: Phase diagrams of small particles of binary systems. Nanotechnology 11, 6 (2002).
12Shirinyan, A.S. and Gusak, A.M.: Phase diagrams of decomposing nanoalloys. Philos. Mag. 84, 579 (2004).
13Allen, G.L. and Jesser, W.A.: The structure and melting character of sub-micron In-Sn and Bi-Sn particles. J. Cryst. Growth 70, 546 (1984).
14Jesser, W.A., Shiflet, G.J., Allen, G.L. and Crawford, J.L.: Equilibrium phase diagrams of isolated nano-phase. Mater. Res. Innovat. 2, 211 (1999).
15Mori, H., Lee, J-G. and Yasuda, H. In-situ TEM observation of alloying process in isolated nanometer-sized particles, in Nano and Microstructural Design of Advanced Materials, edited by Meyers, M., Ritchie, R.O., and Sarikaya, M. (Elsevier, UK 2003), pp. 4959.
16Kamino, T. and Saka, H.: A newly developed high-resolution hot stage and its application to materials characterization. Microsc. Microanal. Microstruct. 4, 127 (1993).
17Lee, J-G., Mori, H. and Yasuda, H.: Alloy phase formation in nanometer-sized particles in the In–Sn system. Phys. Rev. B 65, 132106 (2002).
18Lee, J-G. and Mori, H.: Particle-size dependence of alloy phase formation in isolated particles in the In–Sn system. J. Vac. Sci. Technol. A 21, 31 (2003).
19Mori, H. and Yasuda, H.: Alloy phase formation in nanometer-sized Au–Sn particles. Scripta Mater. 44, 1987 (2001).
20Lee, J-G. and Mori, H.: In situ HREM study on the structural in stability of isolated nanometer-sized alloy particles in the Sn–Bi system. J. Electron. Micros. 52, 57 (2003).
21Lee, J-G. and Mori, H.: In situ observation of alloy phase formation in nanometer-sized particles in the Sn–Bi system. Philos. Mag. 84, 2675 (2004).
22Hagege, S. and Dahmen, U.: Morphology, structure and thermal behaviour of small eutectic Pb-Cd inclusions in aluminium. Philos. Mag. Lett. 74, 259 (1996).
23Massalski, T.B., Murray, J.L., Bennett, L.H. and Baker, H.: Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).
24Iijima, S. and Ichihashi, T.: Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616 (1986).
25Iijima, S. Some experiments on structural instability of small particles of metals, in Microclusters, edited by Sugano, S., Nishina, Y., and Ohnishi, S. (Springer-Verlag, Berlin, Heidelberg, Germany, 1987), p. 186.
26Ajayan, P.M. and Marks, L.D.: Quasimelting and phases of small particles. Phys. Rev. Lett. 60, 585 (1988).
27Ajayan, P.M. and Marks, L.D.: Experimental evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279 (1989).
28Mitome, M., Tanishiro, Y. and Takayanagi, K.: On the structure and stability of small metal particles. Z. Phys. D 12, 45 (1989).
29Lee, J-G. Alloy phase formation in isolated nanometer-sized particles in tin-based alloy systems. Ph.D. Thesis, Osaka University, Osaka, Japan (2002).
30Lee, J-G., Mori, H. and Yasuda, H.: In situ observation of a fluid amorphous phase formed in isolated nanometer-sized particles in the Sn–Bi system. Phys. Rev. B 66, 012105 (2002).
31 ThermoCalc thermodynamic database (software) Version L, (Stockholm Royal Institute, Stockholm, Sweden, 1998).
32Yasuda, H., Mitsuishi, K. and Mori, H.: Particle-size dependence of phase stability and amorphouslike phase formation in nanometer-sized Au-Sn alloy particles. Phys. Rev. B 64, 094101 (2001).
33Lee, J-G. and Mori, H.: Solid/liquid two-phase structures in isolated nanometer-sized alloy particles. Phys. Rev. B 70, 144105 (2004).
34Mori, H. and Yasuda, H.: Alloy phase formation in nanometer-sized particles. Mater. Sci. Eng. A 312, 99 (2001).
35Lee, J-G. and Mori, H. In-situ TEM observation of crystalline-to-liquid phase change in nanometer-sized alloy particles, in Surfaces and Interfaces in Nanostructured Materials and Trends in LIGA, Miniaturization, and Nanoscale Materials, edited by Mukhopadhyay, S.M., Seal, S., Dahotre, N., Agarwal, A., Smugeresky, J.E., and Moody, N. (TMS2004 Symp. Proc., TMS, Warrendale, PA, 2004), p. 3.
36Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975).
37Iida, T. and Guthrie, R.I.L.: The Physical Properties of Liquid Metals (Clarendon Press, Oxford, U.K., 1988).
38Tyson, W.R. and Miller, W.A.: Surface free energies of solid metals. Surf. Sci. 62, 267 (1977).
39Lee, J-G. and Mori, H. (unpublished).

Keywords

In situ High-resolution Electron Microscope Observation of Phase Change in Nanometer-sized Alloy Particles

  • Jung-Goo Lee (a1), Hirotaro Mori (a1) and Hidehiro Yasuda (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed