Skip to main content Accessibility help

In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries

  • Haijiao Zhang (a1), Panpan Xu (a2), Yang Ni (a2), Hongya Geng (a2), Guanghong Zheng (a3), Bin Dong (a3) and Zheng Jiao (a4)...


In the work, an in situ chemical synthesis approach has been developed to fabricate SnO2/reduced graphene oxide nanocomposites in ethanol solution. X-ray diffraction, x-ray photoelectron, Fourier transform infrared and Raman spectrum revealed the formation of SnO2/reduced graphene oxide nanocomposites. Scanning electron microscopy and transmission electron microscopy showed that SnO2 nanoparticles had a crystal size of about 3–4 nm and homogeneously distributed on reduced graphene oxide matrix. The electrochemical performances of the SnO2/reduced graphene oxide nanocomposites as anode materials were measured by the galvanostatic charge/discharge cycling. The results indicated that as-synthesized SnO2/reduced graphene oxide nanocomposites had a reversible lithium storage capacity of 1051 mAh/g and an enhanced cyclability, which can be attributed to increased electrode conductivity and buffer effect to volume change in the presence of a percolated reduced graphene oxide network embedded into the metal oxide electrodes.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Paek, S.M., Yoo, E.J., and Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72 (2008).
2. Buqa, H., Goers, D., Holzapfel, M., Spah, M.E., and Novák, P.: High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, 474 (2005).
3. Akl, N.N., Trofymluk, O., Qi, X., Kim, J.Y., Osterloh, F.E., and Navrotsky, A.: A nanowire-nanoparticle cross-linking approach to highly porous electrically conducting solids. Angew. Chem. Int. Ed. 118, 3735 (2006).
4. Lou, X.W., Wang, Y., Yuan, C., Lee, J.Y., and Archer, L.A.: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).
5. Chan, C.K., Zhang, X.F., and Cui, Y.: High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307 (2008).
6. Kim, D.W., Hwang, I.S., Kwon, S.J., Kang, H.Y., Park, K.S., Choi, Y.J., Choi, K.J., and Park, J.G.: Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7, 3041 (2007).
7. Wang, Y., Lee, J.Y., and Zeng, H.C.: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899 (2005).
8. Liu, Y.L., Yang, H.F., Yang, Y., Liu, Z.M., Shen, G.L., and Yu, R.Q.: Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes. Thin Solid Films 497, 355 (2006).
9. Han, W.Q. and Zettl, A.: Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).
10. Fan, J., Wang, T., Yu, C., Tu, B., Jiang, Z., and Zhao, D.: Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16, 1432 (2004).
11. Wen, Z., Wang, Q., Zhang, Q., and Li, J.: In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17, 2772 (2007).
12. Fu, Y.B., Ma, R.B., Shu, Y., Cao, Z., and Ma, X.H.: Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater. Lett. 63, 1946 (2009).
13. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L.V., and Zhang, J.: Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907 (2009).
14. Li, Y., Tang, L., and Li, J.: Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846 (2009).
15. Wang, D.H., Kou, R., Choi, D.W., Yang, Z.G., Nie, Z.M., Li, J., Saraf, L.V., Hu, D.H., Zhang, J.G., Graff, G.L., Liu, J., Pope, M.A., and Aksay, I.A.: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587 (2010).
16. Yao, J., Shen, X., Wang, B., Liu, H., and Wang, G.: In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11, 1849 (2009).
17. Wang, Y., Zeng, H.C., and Lee, J.Y.: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18, 645 (2006).
18. Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008).
19. Meyer, J.C., Geim, A., Katsnelson, M., Novoselov, K., Booth, T., and Roth, S.: The structure of suspended graphene sheets. Nature 446, 60 (2007).
20. Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S.E., Chen, S.F., Liu, C.P., Nguyen, S.T., and Ruoff, R.S.: Graphene-silica composite thin films as transparent conductors. Nano Lett. 7, 1888 (2007).
21. Wang, X., Zhi, L., and Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323 (2008).
22. Gilje, S., Han, S., Wang, M., Wang, K.L., and Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 3394 (2007).
23. Sun, Y., Li, C., Xu, Y., Bai, H., Yao, Z., and Shi, G.: Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46, 4740 (2010).
24. Yang, H., Hu, Y., Tang, A., Jin, S., and Qiu, G.: Synthesis of tin oxide nanoparticles by mechanochemical reaction. J. Alloys Compd. 363, 276 (2004).
25. An, G., Na, N., Zhang, X., Miao, Z., Miao, S., Ding, K., and Liu, Z.: SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: Highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology 18, 435707 (2007).
26. Stankovich, S., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342 (2006).
27. Akhavan, O.: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509 (2010).
28. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., and Ventrice, C.A. Jr.: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145 (2009).
29. Akhavan, O.: Graphene nanomesh by ZnO nanorod photocatalysts. ACS nano 4, 4174 (2010).
30. Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).
31. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).
32. Lee, K.T., Lytle, J.C., Ergang, N.S., Oh, S.M., and Stein, A.: Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15, 547 (2005).


Type Description Title
Supplementary materials

Zhang et al. supplementary material
Supplementary figures

 Word (863 KB)
863 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed