Skip to main content Accessibility help

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction

  • Giovanni Esteves (a1), Chris M. Fancher (a1) and Jacob L. Jones (a1)


X-ray and neutron diffraction are particularly useful for characterizing ferroelectric materials in situ, e.g., during application of temperature, pressure, electric field, and stress. In this review, we introduce many experimental approaches for such measurements and highlight important discoveries in ferroelectrics that utilized diffraction. We focus our examples on polycrystalline ferroelectrics, though many of the approaches and analysis methods can also be applied to thin films and single crystals. Methods discussed for characterization of structure include, phase identification, line profile analysis, whole pattern fitting, pair distribution functions, and the x-ray diffraction based three-dimensional microscopy. Further advancement of these and other techniques offers potential for continued important contributions to the fundamental understanding of ferroelectric materials.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Yashima, M.: In situ observations of phase transition using high-temperature neutron and synchrotron x-ray powder diffractometry. J. Am. Ceram. Soc. 85, 2925 (2004).
2.Eckold, G., Schober, H., and Nagler, S.: Studying Kinetics with Neutrons: Prospects for Time-Resolved Neutron Scattering (Springer, New York, NY, 2009).
3.Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford, UK, Clarendon, 1985).
4.Cohen, R.E.: Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992).
5.Fang, D., Li, F., Liu, B., Zhang, Y., Hong, J., and Guo, X.: Advances in developing electromechanically coupled computational methods for piezoelectrics/ferroelectrics at multiscale. Appl. Mech. Rev. 65, 060802 (2013).
6.Ambika, D.: Deposition of PZT thin films with (001), (110), and (111) crystallographic orientations and their transverse piezoelectric characteristics. Adv. Mater. Lett. 3, 102 (2012).
7.Goldschmidt, V.M.: Crystal structure and chemical constitution. Trans. Faraday Soc. 25, 253 (1929).
8.Jaffe, B.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809 (1954).
9.Jaffe, B. and Cook, W.R.: Piezoelectric Ceramics (Academic Press Limited, New York, NY, 1971).
10.Keeble, D.S., Barney, E.R., Keen, D.A., Tucker, M.G., Kreisel, J., and Thomas, P.A.: Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv. Funct. Mater. 23, 185 (2013).
11.Wang, Y.: Diffraction theory of nanotwin superlattices with low symmetry phase: Application to rhombohedral nanotwins and monoclinic MA and MB phases. Phys. Rev. B 76, 024108 (2007).
12.Schönau, K.A., Schmitt, L.A., Knapp, M., Fuess, H., Eichel, R-A., Kungl, H., and Hoffmann, M.J.: Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys. Rev. B 75, 184117 (2007).
13.Aksel, E., Forrester, J.S., Nino, J.C., Page, K., Shoemaker, D.P., and Jones, J.L.: Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: Combined x-ray and neutron total scattering study. Phys. Rev. B 87, 104113 (2013).
14.Levin, I. and Reaney, I.M.: Nano- and mesoscale structure of Na1/2Bi1/2TiO3: A TEM perspective. Adv. Funct. Mater. 22, 3445 (2012).
15.Dinnebier, R. and Billinge, S.: Powder Diffraction: Theory and Practice (Royal Society of Chemistry, Cambridge, UK, 2008).
16.Kocks, U.F., Tomé, C.N., and Wenk, H-R.: Texture and Anisotropy Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge University Press, New York, NY, 1998), p. 676.
17.Noheda, B., Cox, D., Shirane, G., Gao, J., and Ye, Z-G.: Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66, 054104 (2002).
18.Chateigner, D., Wenk, H-R., Patel, A., Todd, M., and Barber, D.J.: Analysis of preferred orientations in PST and PZT thin films on various substrates. Integr. Ferroelectr. 19, 121 (1998).
19.Rossetti, G.A., Cross, L.E., and Cline, J.P.: Structural aspects of the ferroelectric phase transition in lanthanum-substituted lead titanate. J. Mater. Sci. 30, 24 (1995).
20.Bing, Y-H., Bokov, A.A., Ye, Z-G., Noheda, B., and Shirane, G.: Structural phase transition and dielectric relaxation in Pb(Zn1/3Nb2/3)O3 single crystals. J. Phys. Condens. Matter 17, 2493 (2005).
21.Chattopadhyay, S., Ayyub, P., Palkar, V., and Multani, M.: Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B 52, 13177 (1995).
22.Uchino, K., Sadanaga, E., and Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555 (1989).
23.Johnson-Wilke, R.L., Tinberg, D.S., Yeager, C., Qu, W., Fong, D.D., Fister, T.T., Streiffer, S.K., Han, Y., Reaney, I.M., and Trolier-McKinstry, S.: Coherently strained epitaxial Pb(Zr1−xTix)O3 thin films. J. Appl. Phys. 114, 164104 (2013).
24.Zhong, W.L., Jiang, B., Zhang, P.L., Ma, J.M., Cheng, H.M., and Yang, Z.H.: Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter 5, 2619 (1993).
25.Zhou, Z., Obi, O., Nan, T.X., Beguhn, S., Lou, J., Yang, X., Gao, Y., Li, M., Rand, S., Lin, H., Sun, N.X., Esteves, G., Nittala, K., Jones, J.L., Mahalingam, K., Liu, M., and Brown, G.J.: Low-temperature spin spray deposited ferrite/piezoelectric thin film magnetoelectric heterostructures with strong magnetoelectric coupling. J. Mater. Sci. Mater. Electron. 25, 1188 (2014).
26.Daniels, J.E., Jones, J.L., and Finlayson, T.R.: Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics. J. Phys. D. Appl. Phys. 39, 5294 (2006).
27.Cullity, B.D. and Stock, S.R.: Elements of X-ray Diffraction 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).
28.Ueda, R. and Shirane, G.: X-ray study on phase transition of lead zirconate, PbZrO3. J. Phys. Soc. Jpn. 6, 209 (1951).
29.Noheda, B., Cox, D.E., Shirane, G., Gonzalo, J.A., Cross, L.E., and Park, S-E.: A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059 (1999).
30.Noheda, B., Gonzalo, J., Cross, L., Guo, R., Park, S-E., Cox, D., and Shirane, G.: Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687 (2000).
31.Zhang, N., Yokota, H., Glazer, A.M., and Thomas, P.A.: Neutron powder diffraction refinement of PbZr(1-x)Ti(x)O3. Acta Crystallogr. B. 67, 386 (2011).
32.Woodward, D., Knudsen, J., and Reaney, I.: Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys. Rev. B 72, 104110 (2005).
33.Noheda, B. and Cox, D.E.: Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 79, 5 (2006).
34.Gorfman, S., Keeble, D.S., Glazer, A.M., Long, X., Xie, Y., Ye, Z-G., Collins, S., and Thomas, P.A.: High-resolution x-ray diffraction study of single crystals of lead zirconate titanate. Phys. Rev. B 84, 020102 (2011).
35.Katrusiak, A.: High-pressure crystallography. Acta Crystallogr. A 64, 135 (2008).
36.Piermarini, G.: High pressure x-ray crystallography with the diamond cell at NIST/NBS. J. Res. Natl. Inst. Stand. Technol. 106, 889 (2011).
37.Pecharsky, V. and Zavalij, P.: Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, Boston, MA, 2009).
38.Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., and Morard, G.: Melting of iron at earth’s inner core boundary based on fast x-ray diffraction. Science 340, 464 (2013).
39.Ahart, M., Cohen, R., Struzhkin, V., Gregoryanz, E., Rytz, D., Prosandeev, S., Mao, H., and Hemley, R.: High-pressure Raman scattering and x-ray diffraction of the relaxor ferroelectric 0.96Pb(Zn1∕3Nb2∕3)O3-0.04PbTiO3. Phys. Rev. B 71, 144102 (2005).
40.Ahart, M., Somayazulu, M., Cohen, R.E., Ganesh, P., Dera, P., Mao, H., Hemley, R.J., Ren, Y., Liermann, P., and Wu, Z.: Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545 (2008).
41.Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).
42.Daniels, J.E., Jo, W., Rödel, J., Honkimäki, V., and Jones, J.L.: Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: A combinatorial investigation. Acta Mater. 58, 2103 (2010).
43.Daniels, J.E., Jo, W., Rödel, J., and Jones, J.L.: Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic. Appl. Phys. Lett. 95, 032904 (2009).
44.Royles, A.J., Bell, A.J., Jephcoat, A.P., Kleppe, A.K., Milne, S.J. and Comyn, T.P.: Electric-field-induced phase switching in the lead free piezoelectric potassium sodium bismuth titanate. Appl. Phys. Lett. 97, 132909 (2010).
45.Dutta, I. and Singh, R.N.: Dynamic in situ x-ray diffraction study of antiferroelectric–ferroelectric phase transition in strontium-modified lead zirconate titanate ceramics. Integr. Ferroelectr. 131, 153 (2011).
46.Hinterstein, M., Rouquette, J., Haines, J., Papet, P., Knapp, M., Glaum, J., and Fuess, H.: Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Phys. Rev. Lett. 107, 077602 (2011).
47.Jones, J.L., Aksel, E., Tutuncu, G., Usher, T-M., Chen, J., Xing, X., and Studer, A.J.: Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: Frequency dispersion and contribution to piezoelectric and dielectric properties. Phys. Rev. B 86, 024104 (2012).
48.Simons, H., Daniels, J.E., Studer, A.J., Jones, J.L., and Hoffman, M.: Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectors. J. Electroceramics 32, 283 (2014).
49.Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).
50.McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louër, D., and Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36 (1999).
51.Young, R.A.: The Rietveld Method (Oxford University Press, Oxford, UK, 1995).
52.Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210 (2001).
53.Larzon, A.C. and Von Dreele, R.B.: GSAS (General Structure Analysis System). LANSCE, MS-H805; Los Alamos, NM, 1994.
54.Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192, 55 (1993).
55.Božin, E.S., Malliakas, C.D., Souvatzis, P., Proffen, T., Spaldin, N.A., Kanatzidis, M.G., and Billinge, S.J.L.: Entropically stabilized local dipole formation in lead chalcogenides. Science 330, 1660 (2010).
56.Zhang, Y., Ke, X., Kent, P.R.C., Yang, J., and Chen, C.: Anomalous lattice dynamics near the ferroelectric instability in PbTe. Phys. Rev. Lett. 107, 175503 (2011).
57.Axe, J.: Apparent ionic charges and vibrational eigenmodes of BaTiO3 and other perovskites. Phys. Rev. 157, 429 (1967).
58.Shimakawa, Y., Kubo, Y., Nakagawa, Y., Goto, S., Kamiyama, T., Asano, H., and Izumi, F.: Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba). Phys. Rev. B 61, 6559 (2000).
59.Megaw, H.D. and Darlington, C.N.W.: Geometrical and structural relations in the rhombohedral perovskites. Acta Crystallogr. Sect. A 31, 161 (1975).
60.Pandey, D., Singh, A.K., and Baik, S.: Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O3 ceramics. Acta Crystallogr. A 64, 192 (2008).
61.Forrester, J.S., Kisi, E.H., Knight, K.S., and Howard, C.J.: Rhombohedral to cubic phase transition in the relaxor ferroelectric PZN. J. Phys. Condens. Matter 18, L233 (2006).
62.Corker, D.L., Glazer, A.M., Whatmore, R.W., Stallard, A., and Fauth, F.: A neutron diffraction investigation into the rhombohedral phases of the perovskite series. J. Phys. Condens. Matter 10, 6251 (1998).
63.Glazer, A.M. and Mabud, S.A.: Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 34, 1065 (1978).
64.Kornev, I.A., Bellaiche, L., Janolin, P-E., Dkhil, B. and Suard, E.: Phase diagram of Pb(Zr,Ti)O3 solid solutions from first principles. Phys. Rev. Lett. 97, 157601 (2006).
65.Hill, R.J. and Howard, C.J.: Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 20, 467 (1987).
66.Jones, G.O. and Thomas, P.A.: Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. Sect. B Struct. Sci. 58, 168 (2002).
67.Aksel, E., Forrester, J.S., Kowalski, B., Jones, J.L., and Thomas, P.A.: Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction. Appl. Phys. Lett. 99, 222901 (2011).
68.Hiruma, Y., Nagata, H., and Takenaka, T.: Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009).
69.Aksel, E., Forrester, J.S., Foronda, H.M., Dittmer, R., Damjanovic, D., and Jones, J.L.: Structure and properties of La-modified Na0.5Bi0.5TiO3 at ambient and elevated temperatures. J. Appl. Phys. 112, 054111 (2012).
70.Aksel, E., Forrester, J.S., Kowalski, B., Deluca, M., Damjanovic, D., and Jones, J.L.: Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature. Phys. Rev. B 85, 024121 (2012).
71.Sani, A., Hanfland, M., and Levy, D.: Pressure and temperature dependence of the ferroelectric–paraelectric phase transition in PbTiO3. J. Solid State Chem. 167, 446 (2002).
72.Thomas, P.A., Kreisel, J., Glazer, A.M., Bouvier, P., Jiang, Q., and Smith, R.: The high-pressure structural phase transitions of sodium bismuth titanate. Zeitschrift für Krist. 220, 717 (2005).
73.Pramanick, A., Damjanovic, D., Daniels, J.E., Nino, J.C., and Jones, J.L.: Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94, 293 (2011).
74.Tutuncu, G., Fan, L., Chen, J., Xing, X., and Jones, J.L.: Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1/2Ti1/2)O3–0.45PbTiO3 polycrystalline ferroelectrics. Appl. Phys. Lett. 104, 132907 (2014).
75.Jones, J.L., Slamovich, E.B., and Bowman, K.J.: Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction. J. Appl. Phys. 97, 034113 (2005).
76.Tutuncu, G., Li, B., Bowman, K., and Jones, J.L.: Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1−x)Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 using in situ high-energy x-ray diffraction during application of electric fields. J. Appl. Phys. 115, 144104 (2014).
77.Grigoriev, A., Do, D-H., Kim, D., Eom, C-B., Adams, B., Dufresne, E., and Evans, P.: Nanosecond domain wall dynamics in ferroelectric Pb(Zr,Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006).
78.Genenko, Y.A., Zhukov, S., Yampolskii, S.V., Schütrumpf, J., Dittmer, R., Jo, W., Kungl, H., Hoffmann, M.J., and von Seggern, H.: Universal polarization switching behavior of disordered ferroelectrics. Adv. Funct. Mater. 22, 2058 (2012).
79.Daniels, J.E., Cozzan, C., Ukritnukun, S., Tutuncu, G., Andrieux, J., Glaum, J., Dosch, C., Jo, W., and Jones, J.L.: Two-step polarization reversal in biased ferroelectrics. J. Appl. Phys. 115, 224104 (2014).
80.Gorfman, S., Schmidt, O., Pietsch, U., Becker, P., and Bohatý, L.: X-ray diffraction study of the piezoelectric properties of BiB3O6 single crystals. Zeitschrift für Krist. 222, 396 (2007).
81.Fertey, P., Alle, P., Wenger, E., Dinkespiler, B., Cambon, O., Haines, J., Hustache, S., Medjoubi, K., Picca, F., Dawiec, A., Breugnon, P., Delpierre, P., Mazzoli, C., and Lecomte, C.: Diffraction studies under in situ electric field using a large-area hybrid pixel XPAD detector. J. Appl. Crystallogr. 46, 1151 (2013).
82.Gorfman, S., Tsirelson, V., Pucher, A., Morgenroth, W., and Pietsch, U.: X-ray diffraction by a crystal in a permanent external electric field: Electric-field-induced structural response in alpha-GaPO4. Acta Crystallogr. A 62, 1 (2006).
83.Gorfman, S., Schmidt, O., Tsirelson, V., Ziolkowski, M., and Pietsch, U.: Crystallography under external electric field. Zeitschrift für Anorg. und Allg. Chemie 639, 1953 (2013).
84.Ghosh, D., Sakata, A., Carter, J., Thomas, P.A., Han, H., Nino, J.C., and Jones, J.L.: Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes. Adv. Funct. Mater. 24, 885 (2014).
85.Evans, J.D.S., Oliver, E.C., Withers, P.J., Mori, T. and Hall, D.A.: In situ neutron diffraction study of the rhombohedral to orthorhombic phase transformation in lead zirconate titanate ceramics produced by uniaxial compression. Philos. Mag. Lett. 87, 41 (2007).
86.Forrester, J.S., Kisi, E.H., and Studer, A.J.: Direct observation of ferroelastic domain switching in polycrystalline BaTiO3 using in situ neutron diffraction. J. Eur. Ceram. Soc. 25, 447 (2005).
87.Tutuncu, G., Motahari, M., Bernier, J., Varlioglu, M., Jones, J.L., and Ustundag, E.: Strain evolution of highly asymmetric polycrystalline ferroelectric ceramics via a self-consistent model and in situ x-ray diffraction. J. Am. Ceram. Soc. 95, 3947 (2012).
88.Webber, K.G., Zhang, Y., Jo, W., Daniels, J.E. and Rödel, J.: High temperature stress-induced “double loop-like” phase transitions in Bi-based perovskites. J. Appl. Phys. 108, 014101 (2010).
89.Jones, J.L., Motahari, S.M., Varlioglu, M., Lienert, U., Bernier, J.V., Hoffman, M., and Üstündag, E.: Crack tip process zone domain switching in a soft lead zirconate titanate ceramic. Acta Mater. 55, 5538 (2007).
90.Pojprapai(Imlao), S., Luo, Z., Clausen, B., Vogel, S.C., Brown, D.W., Russel, J., and Hoffman, M.: Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction. Acta Mater. 58, 1897 (2010).
91.Rogan, R.C., Üstündag, E., Clausen, B., and Daymond, M.R.: Texture and strain analysis of the ferroelastic behavior of Pb(Zr,Ti)O3 by in situ neutron diffraction. J. Appl. Phys. 93, 4104 (2003).
92.Marsilius, M., Granzow, T., and Jones, J.L.: Quantitative comparison between the degree of domain orientation and nonlinear properties of a PZT ceramic during electrical and mechanical loading. J. Mater. Res. 26, 1126 (2011).
93.Jo, W., Daniels, J.E., Jones, J.L., Tan, X., Thomas, P.A., Damjanovic, D., and Rödel, J.: Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 109, 014110 (2011).
94.Eckold, G., Gibhardt, H., Caspary, D., Elter, P., and Elisbihani, K.: Stroboscopic neutron diffraction from spatially modulated systems. Zeitschrift für Krist. 218, 144 (2003).
95.Eckold, G., Hagen, M., and Steigenberger, U.: Kinetics of phase transitions in modulated ferroelectrics: Time-resolved neutron diffraction from Rb2ZnCl4. Phase Transitions 67, 219 (1998).
96.Huang, Z., Zhang, Q., and Whatmore, R.: The role of an intermetallic phase on the crystallization of lead zirconate titanate in sol–gel process. J. Mater. Sci. Lett. 17, 1157 (1998).
97.Nittala, K., Mhin, S., Dunnigan, K.M., Robinson, D.S., Ihlefeld, J.F., Kotula, P.G., Brennecka, G.L., and Jones, J.L.: Phase and texture evolution in solution deposited lead zirconate titanate thin films: Formation and role of the Pt3Pb intermetallic phase. J. Appl. Phys. 113, 244101 (2013).
98.Tutuncu, G., Chang, Y., Poterala, S., Messing, G.L., and Jones, J.L.: In situ observations of templated grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: Texture development and template-matrix interactions. J. Am. Ceram. Soc. 95, 2653 (2012).
99.Egami, T. and Billinge, S.J.L.: Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, Oxford, UK, 2003).
100.Jeong, I-K. and Lee, J.K.: Local structure and medium-range ordering in relaxor ferroelectric Pb(Zn1∕3Nb2∕3)O3 studied using neutron pair distribution function analysis. Appl. Phys. Lett. 88, 262905 (2006).
101.Jeong, I-K., Lee, J.K., and Heffner, R.H.: Local structural view on the polarization rotation in relaxor ferroelectric (1−x)Pb(Zn1∕3Nb2∕3)O3–xPbTiO3. Appl. Phys. Lett. 92, 172911 (2008).
102.Jeong, I-K., Darling, T., Lee, J., Proffen, T., Heffner, R., Park, J., Hong, K., Dmowski, W., and Egami, T.: Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett. 94, 147602 (2005).
103.Grinberg, I. and Rappe, A.: Local structure and macroscopic properties in PbMg1∕3Nb2∕3O3-PbTiO3 and PbZn1∕3Nb2∕3O3-PbTiO3 solid solutions. Phys. Rev. B 70, 220101 (2004).
104.Egami, T., Dmowski, W., Akbas, M., and Davies, P.K.: Local structure and polarization in Pb containing ferroelectric oxides. AIP Conf. Proc. 436, 1 (1998).
105.Chapman, K.W., Chupas, P.J., Halder, G.J., Hriljac, J.A., Kurtz, C., Greve, B.K., Ruschman, C.J., and Wilkinson, A.P.: Optimizing high-pressure pair distribution function measurements in diamond anvil cells. J. Appl. Crystallogr. 43, 297 (2010).
106.Poulsen, H.: Three-Dimensional X-Ray Diffraction Microscopy (Springer, Berlin Heidelberg, 2004), p. 205.
107.Jensen, D.J. and Poulsen, H.F.: The three dimensional x-ray diffraction technique. Mater. Charact. 72, 1 (2012).
108.Schmidt, S.: GrainSpotter: A fast and robust polycrystalline indexing algorithm. J. Appl. Crystallogr. 47, 276 (2014).
109.Lauridsen, E.M., Schmidt, S., Suter, R.M., and Poulsen, H.F.: Tracking: A method for structural characterization of grains in powders or polycrystals. J. Appl. Crystallogr. 34, 744 (2001).
110.Schmidt, S.: GrainSweeper Program. <>.
111.Varlioglu, M., Lienert, U., Park, J-S., Jones, J.L., and Üstündag, E.: Thermal and electric field-dependent evolution of domain structures in polycrystalline BaTiO3 using the 3D-XRD technique. Texture, Stress. Microstruct. 2010, 1 (2010).

Related content

Powered by UNSILO

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction

  • Giovanni Esteves (a1), Chris M. Fancher (a1) and Jacob L. Jones (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.