Skip to main content Accessibility help
×
Home

In situ characterization of fracture toughness and dynamics of nanocrystalline titanium nitride films

  • Yang Hu (a1), Jia-Hong Huang (a2) and Jian-Min Zuo (a3)

Abstract

We designed a clamped beam bending test using a nanoindentation holder with help of transmission electron microscopy (TEM) and focused ion beam specimen fabrication. The microstructure evolution and crack propagation in nanocrystalline TiN were studied by electron imaging and load–displacement measurements during mechanical loading. By measuring the loads under which the crack starts and stops propagating and the time, we obtained the film's fracture toughness using the finite element method and crack propagation speed. Among these, we identified three types of crack propagation pathways, namely bridging, intergranular and a mixed mode of transgranular and intergranular fracture, and the associated microstructure changes. The measured fracture toughness is in agreement with the reported values. Thus, our in situ TEM bending test provides the first direct measurement of fracture toughness in a TEM and a correlation of fracture toughness with fracture toughening mechanisms in nanocrystalline TiN. The method is general and can be applied to other nanocrystalline materials.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jianzuo@illinois.edu

Footnotes

Hide All

Contributing Editor: George M. Pharr

Footnotes

References

Hide All
1. Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).
2. Gleiter, H.: Nanocrystalline materials. Prog. Mater Sci. 33(4), 223 (1989).
3. Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743 (2003).
4. Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561 (1998).
5. Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40(2), 41 (1995).
6. Chen, M.W., Ma, E., Hemker, K.J., Sheng, H.W., Wang, Y.M., and Cheng, X.M.: Deformation twinning in nanocrystalline aluminum. Science 300(5623), 1275 (2003).
7. Schiotz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301(5638), 1357 (2003).
8. Chen, I.W. and Wang, X.H.: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774), 168 (2000).
9. Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).
10. Tjong, S.C. and Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45(1–2), 1 (2004).
11. Bringa, E.M., Caro, A., Wang, Y.M., Victoria, M., McNaney, J.M., Remington, B.A., Smith, R.F., Torralva, B.R., and Van Swygenhoven, H.: Ultrahigh strength in nanocrystalline materials under shock loading. Science 309(5742), 1838 (2005).
12. Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463 (2000).
13. Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419(6910), 912 (2002).
14. Shan, Z., Knapp, J.A., Follstaedt, D.M., Stach, E.A., Wiezorek, J.M.K., and Mao, S.X.: Inter- and intra-agglomerate fracture in nanocrystalline nickel. Phys. Rev. Lett. 100, 105502 (2008).
15. Farkas, D., Van Swygenhoven, H., and Derlet, P.M.: Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101 (2002).
16. Hasnaoui, A., Van Swygenhoven, H., and Derlet, P.M.: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300(5625), 1550 (2003).
17. Szlufarska, I., Nakano, A., and Vashishta, P.: A crossover in the mechanical response of nanocrystalline ceramics. Science 309(5736), 911 (2005).
18. Ovid'ko, I.A. and Sheinerman, A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007).
19. Ovid'ko, I.A. and Sheinerman, A.G.: Nanocrack generation at dislocation-disclination configurations in nanocrystalline metals and ceramics. Phys. Rev. B 77, 054109 (2008).
20. Ovid'ko, I.A., Sheinerman, A.G., and Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59(12), 5023 (2011).
21. Ovid'ko, I.A., Sheinerman, A.G., and Alfantis, E.C.: Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater. 56(12), 2718 (2008).
22. Pozdnyakov, V.A. and Glezer, A.M.: Structural mechanisms of plastic deformation in nanocrystalline materials. Phys. Solid State 44(4), 732 (2002).
23. Wei, G., Bhushan, B., and Jacobs, S.J.: Nanoscale fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices. J. Vac. Sci. Technol., A 22(4), 1397 (2004).
24. Gu, X.W., Wu, Z., Zhang, Y-W., Srolovitz, D.J., and Greer, J.R.: Microstructure versus flaw: Mechanisms of failure and strength in nanostructures. Nano Lett. 13(11), 5703 (2013).
25. Kumar, S., Li, X., Haque, A., and Gao, H.: Is stress concentration relevant for nanocrystalline metals? Nano Lett. 11(6), 2510 (2011).
26. Huang, J-H., Chen, Y-H., Wang, A-N., Yu, G-P., and Chen, H.: Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method. Surf. Coat. Technol. 258, 211 (2014).
27. Wang, A-N., Yu, G-P., and Huang, J-H.: Fracture toughness measurement on TiN hard coatings using internal energy induced cracking. Surf. Coat. Technol. 239, 20 (2014).
28. Zhang, S., Sun, D., Fu, Y.Q., and Du, H.J.: Toughness measurement of thin films: A critical review. Surf. Coat. Technol. 198(1–3), 74 (2005).
29. Jaya, B.N., Jayaram, V., and Biswas, S.K.: A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests. Philos. Mag. 92(25–27), 3326 (2012).
30. Liu, S., Wheeler, J.M., Howie, P.R., Zeng, X.T., Michler, J., and Clegg, W.J.: Measuring the fracture resistance of hard coatings. Appl. Phys. Lett. 102, 171907 (2013).
31. Matoy, K., Schonherr, H., Detzel, T., Schoberl, T., Pippan, R., Motz, C., and Dehm, G.: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518(1), 247 (2009).
32. Mueller, M.G., Pejchal, V., Žagar, G., Singh, A., Cantoni, M., and Mortensen, A.: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater. 86, 385 (2015).
33. Johansson, S., Schweitz, J.Å., Tenerz, L., and Tiren, J.: Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63(10), 4799 (1988).
34. Yawny, A.A. and Perez Ipina, J.E.: In situ fracture toughness measurement using scanning electron microscopy. J. Test. Eval. 31(5), 413 (2003).
35. Zhang, X. and Zhang, S.: A Microbridge method in tensile testing of substrate for fracture toughness of thin films. Nanosci. Nanotechnol. Lett. 3(6), 735 (2011).
36. Chen, P. and Wu, W-Y.: The use of sputter deposited TiN thin film as a surface conducting layer on the counter electrode of flexible plastic dye-sensitized solar cells. Surf. Coat. Technol. 231, 140 (2013).
37. Wang, A-N., Chuang, C-P., Yu, G-P., and Huang, J-H.: Determination of average x-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ x-ray diffraction method. Surf. Coat. Technol. 262, 40 (2015).
38. Ma, C.H., Huang, J.H., and Chen, H.: Nanohardness of nanocrystalline TiN thin films. Surf. Coat. Technol. 200(12–13), 3868 (2006).
39. Chan, S., Tuba, I., and Wilson, W.: On the finite element method in linear fracture mechanics. Eng. Fract. Mech. 2(1), 1 (1970).
40. Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (Wiley, New York, 2013).
41. Massl, S., Thomma, W., Keckes, J., and Pippan, R.: Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique. Acta Mater. 57(6), 1768 (2009).
42. Manoharan, M.P., Desai, A.V., and Haque, M.A.: Fracture toughness characterization of advanced coatings. J. Micromech. Microeng. 19(11), 115004 (2009).
43. Kataria, S., Srivastava, S.K., Kumar, P., Srinivas, G., Siju, J., Khan, J., Rao, D.V.S., and Barshilia, H.C.: Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate. Surf. Coat. Technol. 206(19–20), 4279 (2012).
44. Jaya, B.N. and Jayaram, V.: Crack stability in edge-notched clamped beam specimens: Modeling and experiments. Int. J Fract. 188(2), 213 (2014).
45. Kim, K.H., Xing, H., Zuo, J.M., Zhang, P., and Wang, H.: TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron 71, 3945 (2015).
46. Liao, X.Z., Zhou, F., Lavernia, E.J., Srinivasan, S.G., Baskes, M.I., He, D.W., and Zhu, Y.T.: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83(4), 632 (2003).
47. Van Swygenhoven, H., Derlet, P.M., and Hasnaoui, A.: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66(2), 024101 (2002).
48. Van Swygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9(5), 24 (2006).
49. Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387 (2003).

Keywords

Type Description Title
VIDEO
Supplementary materials

Hu supplementary material S1
Supplementary Video

 Video (27.2 MB)
27.2 MB

In situ characterization of fracture toughness and dynamics of nanocrystalline titanium nitride films

  • Yang Hu (a1), Jia-Hong Huang (a2) and Jian-Min Zuo (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed