Skip to main content Accessibility help
×
Home

In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling

  • Zunyan Xu (a1), Caiju Li (a1), Xiaoqing Liu (a1), Jianhong Yi (a1), Hongda Guan (a1) and Ningyu Li (a1)...

Abstract

In this paper, in situ Al4C3 and carbon nanotubes (CNTs) hybrid-reinforced aluminum matrix composites were prepared by a two-step ball milling (TSBM), consisting of a 24-h long-time ball milling (LTBM) and a 6-h short-time ball milling (STBM). During LTBM, most of the CNTs were seriously damaged, and many amorphous carbon atoms derived from these damaged defects would react with Al powder to form in situ Al4C3 nanorods. Subsequently, 1 wt% CNTs were added into the composite powders for STBM to uniformly disperse CNTs into the composite powders. Compared with that of the composite prepared by one-step ball milling, the comprehensive mechanical properties of the composite prepared by the TSBM are improved obviously due to the synergistic effects of in situ Al4C3 and CNTs, and the tensile strength and elongation reached 258 MPa and 19.5%, respectively. The strengthening mechanisms of TSBM composite include fine-grained strengthening, dispersion strengthening by in situ Al4C3, and load transfer from matrix to CNTs.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: lcj@kmust.edu.cn

References

Hide All
1.Miracle, D.B.: Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 65, 2526 (2005).
2.Bradbury, C.R., Gomon, J.K., Kollo, L., Kwon, H., and Leparoux, M.: Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloy. Comp. 585, 362 (2014).
3.Wang, Z., Scudino, S., Stoica, M., Zhang, W., and Eckert, J.: Al-based matrix composites reinforced with short Fe-based metallic glassy fiber. J. Alloys Compd. 651, 170 (2015).
4.Wang, Z., Song, M., Sun, C., Xiao, D., and He, Y.: Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites. Mater. Sci. Eng., A 527, 6537 (2010).
5.Wang, Z., Georgarakis, K., Nakayama, K.S., Li, Y., Tsarkov, A.A., Xie, G., Dudina, D., Louzguine-Luzgin, D.V., and Yavari, A.R.: Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 6, 24384 (2016).
6.Li, Y. and Ramesh, K.T.: Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain. Acta Mater. 46, 5633 (1998).
7.Suh, Y.S., Joshi, S.P., and Ramesh, K.T.: An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Mater. 57, 5848 (2009).
8.Kai, X.Z., Li, Z.Q., Fan, G.L., Guo, Q., Xiong, D.B., Zhang, W.L., Su, Y.S., Lu, W.J., Moon, W.J., and Zhang, D.: Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy. Mater. Sci. Eng., A 587, 46 (2013).
9.Woo, D.J., Sneed, B., Peerally, F., Heer, F.C., Brewer, L.N., Hooper, J.P., and Osswald, S.: Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray. Carbon 63, 404 (2013).
10.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
11.Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).
12.Guo, B., Chen, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T., and Du, Y.: Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon 135, 224 (2018).
13.Guo, B., Song, M., Yi, J., Ni, S., Shen, T., and Du, Y.: Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater. Des. 120, 56 (2017).
14.Kim, K.T., Eckert, J., Menzel, S.B., Gemming, T., and Hong, S.H.: Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites. Appl. Phys. Lett. 92, 31 (2008).
15.Yang, Q., Deng, Y., and Hu, W.: Preparation of alumina/carbon nanotubes composites by chemical precipitation. Ceram. Int. 35, 1305 (2009).
16.Ahmad, I., Unwin, M., Cao, H., Chen, H., Zhao, H., Kennedy, A., and Zhu, Y.Q.: Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations. Compos. Sci. Technol. 70, 1199 (2010).
17.Lee, K., Mo, C.B., Park, S.B., and Hong, S.H.: Mechanical and electrical properties of multiwalled CNT-alumina nanocomposites prepared by a sequential two-step processing of ultrasonic spray pyrolysis and spark plasma sintering. J. Am. Ceram. Soc. 94, 3774 (2011).
18.Li, S., Su, Y., Zhu, X., Jin, H., Ouyang, Q., and Zhang, D.: Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in situ carbon nanotube reinforced 6061 aluminum matrix composites. Mater. Des. 107, 130 (2016).
19.Chen, B., Shen, J., Ye, X., Jia, L., Li, S., Umeda, J., Takahashi, M., and Kondoh, K.: Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 140, 317 (2017).
20.Liu, Z.Y., Xu, S.J., Xiao, B.L., Xue, P., Wang, W.G., and Ma, Z.Y.: Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites, Part A 43, 2161 (2012).
21.Saba, F., Sajjadi, S.A., Haddad-Sabzevar, M., and Zhang, F.: Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon 115, 720 (2017).
22.Zhang, X., Li, S., Pan, B., Pan, D., Zhou, S., Yang, S., Jia, L., and Kondoh, K.: A novel strengthening effect of in situ nano Al2O3w on CNTs reinforced aluminum matrix nanocomposites and the matched strengthening mechanisms. J. Alloys Compd. 764, 279 (2018).
23.Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M., and Kondoh, K.: Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J. Alloys Compd. 651, 608 (2015).
24.Liu, X.Q., Li, C.J., Yi, J.H., Prashanth, K.G., Chawake, N., Tao, J.M., You, X., Liu, Y.C., and Eckert, J.: Enhancing the interface bonding in carbon nanotubes reinforced Al matrix composites by the in situ formation of TiAl3 and TiC. J. Alloys Compd. 765, 98 (2018).
25.Chen, B., Shen, J., Ye, X., Imai, H., Umeda, J., Takahashi, M., and Kondoh, K.: Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon 114, 198 (2017).
26.Liu, X., Li, C., Eckert, J., Prashanth, K.G., Renk, O., Teng, L., Liu, Y., Bao, R., Tao, J., Shen, T., and Yi, J.: Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites. Mater. Charact. 133, 122 (2017).
27.Najimi, A.A. and Shahverdi, H.R.: Effect of milling methods on microstructures and mechanical properties of Al6061-CNT composite fabricated by spark plasma sintering. Mater. Sci. Eng., A 702, 87 (2017).
28.Kallip, K., Leparoux, M., AlOgab, K.A., Clerc, S., Deguilhem, G., Arroyo, Y., and Kwon, H.: Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites. J. Alloys Compd. 646, 710 (2015).
29.Xu, R., Tan, Z., Xiong, D., Fan, G., Guo, Q., Zhang, J., Su, Y., Li, Z., and Zhang, D.: Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites, Part A 96, 57 (2017).
30.Chen, B., Jia, L., Li, S., Imai, H., Takahashi, M., and Kondoh, K.: In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites. Adv. Eng. Mater. 16, 972 (2014).
31.Zhou, W., Sasaki, S., and Kawasaki, A.: Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon 78, 121 (2014).
32.Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y., and Kawasaki, A.: Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96, 919 (2016).
33.Jiang, L., Li, Z., Fan, G., Cao, L., and Zhang, D.: The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50, 1993 (2012).
34.Sun, Y., Cui, H., Gong, L., Chen, J., Shen, P.K., and Wang, C.X.: Field nanoemitter: One-dimension Al4C3 ceramics. Nanoscale 3, 2978 (2011).
35.Steffens, H.D., Reznik, B., Kruzhanov, V., and Dudzinski, W.: Carbide formation in aluminium–carbon fibre-reinforced composites. J. Mater. Sci. 32, 5413 (1997).
36.Nam, D.H., Cha, S.I., Lim, B.K., Park, H.M., Han, D.S., and Hong, S.H.: Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon 50, 2417 (2012).
37.George, R., Kashyap, K.T., Rahul, R., and Yamdagni, S.: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53, 1159 (2005).
38.Li, S., Sun, B., Imai, H., and Kondoh, K.: Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon 61, 216 (2013).
39.Park, J.G., Keum, D.H., and Lee, Y.H.: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690 (2015).
40.Yoo, S.J., Han, S.H., and Kim, W.J.: Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scr. Mater. 68, 711 (2013).
41.Chen, X., Tao, J., Yi, J., Liu, Y., Li, C., and Bao, R.: Strengthening behavior of carbon nanotube-graphene hybrids in copper matrix composites. Mater. Sci. Eng., A 718, 427 (2018).
42.Muñoz-Morris, M.A., Oca, C.G., and Morris, D.G.: An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic. Acta Mater. 50, 2825 (2002).
43.Stoller, R.E. and Zinkle, S.J.: On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J. Nucl. Mater. 283, 349 (2000).
44.Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982).
45.Bakshi, S.R. and Agarwal, A.: An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49, 533 (2011).
46.Xie, S., Li, W., Pan, Z., Chang, B., and Sun, L.: Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153 (2000).
47.Deutschman, A.D., Michels, W.J., and Wilson, C.E.: Machine Design: Theory and Practice (Macmillan, London, 1975).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed