Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T21:26:59.445Z Has data issue: false hasContentIssue false

Improving glass-forming ability of Mg−Cu−Y via substitutional alloying: Effects of Ag versus Ni

Published online by Cambridge University Press:  03 March 2011

Han Ma
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
Ling-Ling Shi
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
Jian Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
Yi Li
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 117675, Singapore
En Ma
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
*
a) Address all correspondence to this author. e-mail: jianxu@imr.ac.cn
Get access

Abstract

Based on the best bulk metallic glass (BMG) forming alloy in the Mg−Cu−Y ternary system, we introduced Ag (or Ni) to partially substitute for Cu to improve the glass-forming ability (GFA). The objective of this paper is twofold. First, we illustrate in detail a recently developed search strategy, which was proposed but only briefly outlined in our previous publication [H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005)]. The protocol to navigate in three-dimensional composition space to land large BMGs is spelled out step-by-step using the pseudo-ternary Mg−(Cu,Ag)−Y as the model system. Second, our ability to locate the best BMG former in the composition tetrahedron allows us to systematically examine, and conclude on, the effects of a given alloying element. The large improvement in glass-forming ability in the Mg−(Cu,Ag)−Y system relative to the based ternary will be contrasted with the reduced glass-forming ability in the Mg−(Cu,Ni)−Y pseudo ternary system. It is demonstrated that the improvement of glass-forming ability requires judicious choice of substitutional alloying elements and concentrations, rather than simple additions of multiple elements assuming the “confusion principle.”

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).CrossRefGoogle Scholar
2Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
3Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
4He, Y., Schwarz, R.B., and Archuleta, J.I.: Bulk glass formation in the Pd−Ni−P system. Appl. Phys. Lett. 69, 1861 (1996).CrossRefGoogle Scholar
5Inoue, A., Nishiyama, N., and Kimura, H.: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 (1997).CrossRefGoogle Scholar
6Schroers, J. and Johnson, W.L.: Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Appl. Phys. Lett. 84, 3666 (2004).CrossRefGoogle Scholar
7Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
8Inoue, A. and Zhang, T.: Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185 (1996).CrossRefGoogle Scholar
9Guo, F.Q., Poon, S.J., and Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 (2003).CrossRefGoogle Scholar
10Guo, F.Q., Wang, H.J., Poon, S.J., and Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).CrossRefGoogle Scholar
11Lu, Z.P., Liu, C.T., Thompson, J.R., and Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).CrossRefGoogle ScholarPubMed
12Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
13Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B., and Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).CrossRefGoogle Scholar
14Xu, D.H., Duan, G., and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
15Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C.: Crystallization-induced plasticity of Cu−Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006).CrossRefGoogle Scholar
16Dai, C.L., Guo, H., Shen, Y., Li, Y., Ma, E., and Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 (2006).CrossRefGoogle Scholar
17Park, E.S. and Kim, D.H.: Formation of Ca−Mg−Zn bulk glassy alloy by casting into cone-shaped copper mold. J. Mater. Res. 19, 685 (2004).CrossRefGoogle Scholar
18Senkov, O.N. and Scott, J.M.: Glass forming ability and thermal stability of ternary Ca−Mg−Zn bulk metallic glasses. J. Non-Cryst. Solids 351, 3087 (2005).CrossRefGoogle Scholar
19Park, E.S. and Kim, D.H.: Formation of Mg−Cu−Ni−Ag−Zn−Y−Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 20, 1465 (2005).CrossRefGoogle Scholar
20Inoue, A., Zhang, T., Takeuchi, A., and Zhang, W.: Hard magnetic bulk amorphous Nd−Fe−Al alloys of 12 mm in diameter made by suction casting. Mater. Trans., JIM 37, 636 (1996).CrossRefGoogle Scholar
21Li, R., Pang, S., Men, H., Ma, C., and Zhang, T.: Formation and mechanical properties of (Ce−La−Pr−Nd)−Co−Al bulk glassy alloys with superior glass-forming ability. Scripta Mater. 54, 1123 (2006).CrossRefGoogle Scholar
22Greer, A.L.: Confusion by design. Nature 366, 303 (1993).CrossRefGoogle Scholar
23Ma, H., Zheng, Q., Xu, J., Li, Y., and Ma, E.: Doubling the critical size for bulk metallic glass formation in the Mg−Cu−Y ternary system. J. Mater. Res. 20, 2252 (2005).CrossRefGoogle Scholar
24Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T.: Mg−Cu−Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 (1991).CrossRefGoogle Scholar
25Miracle, D.B., Sanders, W.S., and Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 (2003).CrossRefGoogle Scholar
26Guo, F.Q., Poon, S.J., and Shiflet, G.J.: Enhanced bulk metallic glass formability by combining chemical compatibility and atomic size effects. J. Appl. Phys. 97, 013512 (2005).CrossRefGoogle Scholar
27Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
28Inoue, A., Zhang, T., and Masumoto, T.: Glass-forming ability of alloys. J. Non-Cryst. Solids 156–158, 473 (1993).CrossRefGoogle Scholar
29Lu, Z.P. and Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).CrossRefGoogle ScholarPubMed
30Tan, H., Zhang, Y., Ma, D., Feng, Y.P., and Li, Y.: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La−Al− (Cu, Ni) pseudo ternary system. Acta Mater. 51, 4551 (2003).CrossRefGoogle Scholar
31Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., and Ma, E.: Bulk metallic glass formation in the binary Cu−Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
32Ma, D., Tan, H., Wang, D., Li, Y., and Ma, E.: Strategy for pinpointing the best glass−forming alloys. Appl. Phys. Lett. 86, 191906 (2005).CrossRefGoogle Scholar
33Kang, H.G., Park, E.S., Kim, W.T., Kim, D.H., and Cho, H.K.: Fabrication of bulk Mg−Cu−Ag−Y glassy alloy by squeeze casting. Mater. Trans., JIM 41, 846 (2000).CrossRefGoogle Scholar
34Chen, L.C. and Spaepen, F.: Analysis of calorimetric measurements of grain-growth. J. Appl. Phys. 69, 679 (1991).CrossRefGoogle Scholar
35Lin, X.H. and Johnson, W.L.: Formation of Ti−Zr−Cu−Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
36Senkov, O.N., Miracle, D.B., and Mullens, H.M.: Topological criteria for amorphization based on a thermodynamic approach. J. Appl. Phys. 97, 103502 (2005).CrossRefGoogle Scholar
37Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
38Park, E.S., Kim, D.H., and Kim, W.T.: Parameter for glass forming ability of ternary alloy systems. Appl. Phys. Lett. 86, 061907 (2005).CrossRefGoogle Scholar
39Senkov, O.N. and Scott, J.M.: Specific criteria for selection of alloy compositions for bulk metallic glasses. Scripta Mater. 50, 449 (2004).CrossRefGoogle Scholar
40Madge, S.V. and Greer, A.L.: Effect of Ag addition on the glass-forming ability and thermal stability of Mg−Cu−Y alloys. Mater. Sci. Eng., A 375–377, 759 (2004).CrossRefGoogle Scholar
41Murty, B.S. and Hono, K.: Formation of nanocrystalline particles in glassy matrix in melt-spun Mg−Cu−Y based alloys. Mater. Trans., JIM 41, 1538 (2000).CrossRefGoogle Scholar